Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

LABORATORY PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering
Semester :	7
Course Code:	15CVL76
Course Title:	Environmental Engineering Laboratory
Credit / L-T-P:	2 / 0-0-2
Total Contact Hours:	42
Course Plan Author:	Priyankashri K N

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	3
1. Laboratory Overview	3
2. Laboratory Content	3
3. Laboratory Material	3
4. Laboratory Prerequisites:	4
5. Content for Placement, Profession, HE and GATE	4
B. Laboratory Instructions	5
1. General Instructions	5
2. Laboratory Specific Instructions	5
C. OBE PARAMETERS	5
1. Laboratory Outcomes	5
2. Laboratory Applications	6
3. Mapping And Justification	7
4. Articulation Matrix	8
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	9
D. COURSE ASSESSMENT	9
1. Laboratory Coverage	9
2. Continuous Internal Assessment (CIA)	10
E. EXPERIMENTS	10
Experiment 01 : Determination of pH, Acidity and Alkalinity	10
Experiment 02 : DETERMINATION OF TOTAL HARDNESS OF WATER SAMPLE	14
Experiment 03 : DISSOLVED OXYGEN TEST BY WINKLER'S METHOD OR MODIFIED	
AZIDE METHOD	18
Experiment 04 : BIOCHEMICAL OXYGEN DEMAND	19
Experiment 05 :DETERMINATION OF CHLORIDE BY ARGENTOMETRIC METHOD OR	
MOHR'S SALT METHOD	21
Experiment 06 : AVAILABLE CHLORINE IN BLEACHING POWDER	22
Experiment 07 : RESIDUAL CHLORINE	23
Experiment 08 : DETERMINATION OF SOLIDS IN SEWAGE:	24
Experiment 09 : Total suspended solids	25
Experiment 10 : TOTAL DISSOLVED SOLIDS	26
Experiment 11 : TOTAL FIXED AND VOLATILE SOLIDS	27
Experiment 11 : TOTAL SETTLEABLE SOLIDS	28
Experiment 12:TURBIDITY DETERMINATION BY NEPHELOMETER	29
Exeriment 13:OPTIMUM DOSAGE COAGULANTS	30
Exeriment 14:DETERMINATION OF SODIUM BY FLAME PHOTOMETER	31
Exeriment 15:DETERMINATION OF POTASSIUM BY FLAME PHOTOMETRY	32
Exeriment 16:DETERMINATION OF NITRATES BY SPECTROSCOPIC METHOD	33
Exeriment 17:DETERMINATION OF IRON BY PHENANTHROLINE METHOD	35
F. Content to Experiment Outcomes	37
1. TLPA Parameters	37
2. Concepts and Outcomes:	38

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.Tech	Program:	CV
Year / Semester :	3/7	Academic Year:	2019-20
Course Title:	Environmental Engineering laboratory	Course Code:	15CVL76
Credit / L-T-P:	2 / 0-0-3	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	5/1 Experiment
Course Plan Author:	Priyankashri K N	Sign	Dt : 04-04-2019
Checked By:	Shiva Prasad D G	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
1	Determination of pH, Acidity and Alkalinity	02	pH, Acidity and Alkalinity	L3 Apply
2	Determination of Calcium, Magnesium and Total Hardness.	02	Calcium, Magnesium and Total Hardness.	L3 Apply
3	Determination of Dissolved Oxygen. Determination of BOD	02	Dissolved Oxygen.BOD	L3 Apply
4	Determination of Chlorides	01	Chlorides	L3 Apply
5	Determination of percentage of available chlorine in bleaching powder,	02	available chlorine	L3 Apply
6	Determination of Residual Chlorine		Residual Chlorine	L3 Apply
7	Determination of Solids in Sewage: I) Total Solids, II) Suspended Solids, III) Dissolved Solids, Volatile Solids, Fixed Solids, V) Settle able Solids.	02	Total Solids,	L3 Apply
8	Determination of Turbidity by Nephelometer	02	Turbidity	L3 Apply
9	Determination of Optimum Dosage of Alum using Jar test apparatus.	02	Optimum Dosage of Alum	L3 Apply
10	Determination of sodium and potassium using flame photometer.	01	sodium and potassium	L3 Apply
11	Determination Nitrates by spectrophotometer.	01	Nitrates	L3 Apply
12	Determination of Iron & Manganese	01	Iron & Manganese	L3 Apply
13	Determination of COD	Demonstr ation	COD	L2 Undestan d
14	Air Quality Monitoring (Ambient, stack monitoring, Indoor air	Demonstr ation	Air Quality	L2 Undestan d
15	Determination of Sound by Sound level meter at different location	Demonstr ation	Sound	L2 Undestan d

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1			In Lib / In Dept
	S.K.Garg, "Water Supply Engineering", Khanna Publishers. 2010 12 B.C Punmia, "Water Supply Engineering", Laxmi Publications Pvt. Ltd.,	In Lib	In Lib/ In dept
	"Standard methods for the examination of water and wastewater" 1995, ALPHA, AWWA, WPCF Publication		-
2	Reference books		In Lib
	"Chemistry for Environmental Engineering"- Sawer and McCarty, McGraw Hill.	In dept	Not Available
	R3 "Manual of standards of quality for Drinking Water Supplies"- Indian Council of Medical Research, New Delhi.		
	"International Standards of Drinking Water" – W.H.O.		-
	"IS 2490-1981, IS 3306- 1974, IS 3307-1977, IS 7968-1976, IS 2296-1974, IS 10500- 1991" Bureau of Indian Standards, New Delhi, Effluent Standard KSPCB		
3	Others (Web, Video, Simulation, Notes etc.)		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (web, video, Simulation, Notes etc.)	-	-

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Expt.	Lab. Code	Lab. Name	Topic / Descri	ption	Sem	Remarks	Blooms Level
1	15CHE17		Basic concepts o	f chemical	01		L3
2		CHEMISTRY		unce			
3							
5							
-							
-							

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
15CVL76			Copyright ©2017. cAAS. All rights res	served.

							Level
1	Knowledge	of	BOD,	COD,	Higher	-	Understa
	Spectrophotom	etry			Study		nd L2
5							
-							

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-	
	charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Students must wear Shoes and Aprons in the Lab	
2	Students must know Do's & Don't's of the Laboratory	
3	Handle chemicals and Glasswares with care	
4	Clean working tables neatly after using	
5	Before conducting any test, students shall come prepared with theoretical background of the corresponding test (indicated under the section'theory' in each test).	
6	Students shall make sure to have the knowledge of using weighing balance ,oven.	
7	Students shall give importance to accuracy and precision while conducting the test and interpreting the results	
8	Students shall acquaint themselves with the safe and correct usage of instruments / equipment's glassware chemicals acids under the guidance of teaching / supporting staff of the laboratory	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt. Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment Blooms'
1=0) // =0			Course unionitation		

			Hours		Method	Method	Level
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1	15CVL76.1	The students will be able to understand the importance of water quality standards	02	Quality standards	Lecture and demons tration	C.IA	L3 Apply
2	15CVL76.2	The student will be able to analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity	02	pH, Acidity and Alkalinity	Lecture and demons tration	C.IA	L3 Apply
3	15CVL76.3	The student will be able to analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample	02	Calcium, Magnesium and Total Hardness.	Lecture and demons tration	C.IA	L3 Apply
4	15CVL76.4	The student will be able to analyse the Dissolved oxygen and biochemical oxygen demand in water and waste water	02	Dissolved Oxygen.BOD	Lecture and demons tration	C.IA	L3 Apply
5	15CVL76.5	The student will be able to determine the chlorides in the given sample	02	Chlorides	Lecture and demons tration	C.IA	L3 Apply
6	15CVL76.6	To analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	02	available chlorine, Residual Chlorine	Lecture and demons tration	C.IA	L3 Apply
7	15CVL76.7	The student will be able to determine the optimum dosage of alum using Jar test	02	Turbidity, Optimum Dosage of Alum	Lecture and demons tration	C.IA	L3 Apply
8	15CVL76.8	To analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	. 02	sodium and potassium ,Iron,mangan ese	Lecture and demons tration	C.IA	L3 Apply
9	15CVL76.9	The student will be able to understand the Chemical Oxygen Demand in waste water	02	COD	Lecture and demons tration	C.IA	L3 Apply
10	15CVL76.10	The student will be able to understand the Air quality Monitoring and sound level	02	Air quality, sound	Lecture and demons tration	C.IA	L2 Undesta nd
		Total	36			-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Evaluate physical and chemical biological characteristics of water and waste water	CO1	L3
2	Measure quality of water	CO2	L3
3	To provide safe and portable water to public	CO3	L3
4	Determination of physical characteristics of water	CO4	L3
5	Determination of chemical characteristics of water	CO5	L3
6	Determination of Biological characteristics of water	CO6	L3
7	To check concentration of chlorine sodium potassium iron and manganese levels	CO7	L3

i	in water		
8 /	Ability to find concentration of chemical oxygen demand in waste water	CO8	L3
9 /	Air quality monitoring	CO9	L2
10	Measure noise pollution	CO10	L2

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	Мар	ping	Mapping Justification for each CO-PO pair Level		
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
	CO1	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals inferring the guality of water	, L2
	CO1	PO2	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for dissolved oxygen content in water	L3
	CO2	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out chemical parameters like pH, acidity, alkalinity	L6
	CO2	PO2	L3	The students will be able to identify, formulate, review research literature, and analyse pH, acidity, alkalinity using Indian standard methods in reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L2
	CO2	PO3	L3	The students will be able to design solutions for making the pH, acidity, alkalinity within the standard levels	L3
	CO3	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out the physical characteristics viz. colour, turbidity, and conductivity of a given water sample	L6
	CO3	PO2	L3	The students will be able to identify and examine physical characteristics viz. colour, turbidity, and conductivity of a given water sample using natural sciences, and engineering sciences	L2
	CO4	PO2	L3	The students will be able to identify, formulate and review research literature for dissolved oxygen content in water reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L2
	CO4	PO4	L3	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of dissolved oxygen content	L3
	CO5	PO2	L3	The students will be able to identify, formulate and review research literature for chloride content in water reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L6
	CO5	PO4	L3	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of chlorides content	L2
	CO6	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to examine the chemical characteristics viz. chlorides, Iron, Available Chlorine and sulphates content to assess its suitability for drinking purposes.	L2
	CO6	PO2	L3	The students will be able to identify, formulate, review research literature, and analyse chemical characteristics viz. chlorides, Iron, Available Chlorine and sulphates content in samples	L3
	CO7	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to find the optimum dosage of alum using Jar test	L6
	CO7	PO2	L3	The students will be able to identify, formulate, review research literature, and analyse the optimum dosage of alum using Jar test reaching	L2

			substantiated conclusions natural sciences, and engineering sciences	
CO8	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to examine the chemical characteristics viz. chlorides, sodium potassium, Iron, nitrates, manganese content to assess its suitability for drinking purposes.	L2
CO8	PO2	L3	The students will be able to identify, formulate, review research literature, and analyse chemical characteristics viz. sodium, potassium, Iron, nitrates, manganese content in samples	L3
CO9	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to understand the COD to assess its suitability for drinking purposes.	L6
CO10	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to understand the Air quality Monitoring and sound levels	L2

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes							-								
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1	15CVL76.1	The students will be able to understand the importance of water quality standards	2	3	-	-	-	-	-	-	-	-	-	-				L2
1	15CVL76.2	The student will be able to analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity	3	2	1	-	-	-	-	-	-	-	-	-				L2
2	15CVL76.3	The student will be able to analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample	3	2	3	-	-	_	_	_	_	_	-	_				L2
2	15CVL76.4	The student will be able to analyse the Dissolved oxygen and biochemical oxygen demand in water and waste water	3	3	3	-	-	-	-	-	-	_	-	_				L3
3	15CVL76.5	The student will be able to determine the chlorides in the given sample	3	2		-	-	-	-	-	-	-	-	-				L2
3	15CVL76.6	To analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	3	2		-	-	-	-	-	-	-	-	-				L3
4	15CVL76.7	The student will be able to determine the optimum dosage of alum using Jar test	3	2		-	-	-	-	-	-	-	-	-				L3
4	15CVL76.8	To analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	3	2		_	-	-	-	-	-	-	-	-				L3
5	15CVL76.9	The student will be able to understand the Chemical Oxygen Demand in waste water	3	2		-	-	-	-	-	-	-	-	-				L2

5	15CVL76.10	The stude	nt will	be	able t	0 1	2		-	-	-	-	-	-	-	-	-				L2
		understand	the	Air	qualit	У															
		Monitoring a	and sou	nd le	evel																
-	15CVL76	Average at	ainmer	nt (1,	2, or 3)	2.8	2.5	2.8													-
-	PO, PSO	1.Engineerin	g Know	ledg	e; 2.Prol	olem	Ar	naly	sis;	3.Ľ	Desi	ign	/	Dev	/elo	pm	ent	of	Sc	luti	ons;
		4.Conduct Ir	ivestiga	tions	of Com	olex	Pro	bler	ns; ;	5.M	ode	ern ⁻	Тоо	l Us	age	e; 6.	The	e En	gine	eer	and
		Society; 7.E	nvironn	nent	and S	Susta	aina	bilit	ty;	8.E	thic	S;	9.li	ndiv	idu	al	an	d	Теа	тw	′ork;
		10.Commun	cation;	11.F	Project	Mar	age	eme	ent	an	nd	Fir	nan	ce;	12	Life	e-lo	ong	Le	earr	ning;
		S1.Software Engineering; S2.Data Base Management; S3.Web Design																			

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

-											
Unit	Title	Teachi		No. of question in Exam							Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Determination of pH, Acidity and	06	1	-	-	-	-	-	1	CO1	L3
	Alkalinity										
2	Determination of Calcium, Magnesium	03	1	-	-	-	-	-	1	CO2	L3
	and Total Hardness.										

LABORATORY PLAN - CAY 2019-20

3	Determination of Dissolved Oxygen BOD	03	1	-	-	-	-	-	1	CO3	L3
4	Determination of Chlorides	03	-	1	-	-	-	-	1	CO4	L3
5	Determination of percentage of available chlorine and residual chlorine	03	-	1	-	-	-	-	1	CO5	L3
6	Determination of Solids in Sewage:	03	-	1	-	-	-	-	1	CO6	L3
7	Determination of sodium and potassium using flame photometer.	09	-	-	1	-	-	-	1	CO7	L3
8	Determination Nitrates, sodium by spectrophotometer.	03	-	-	1	-	-	-	1	CO8	L3
9	Determination of COD.	03	-	-	1	-	-	-	1	CO9	L3
10	Air Quality Monitoring	06	-	-	-	-	-	-	1	CO10	L2
-	Total	42	3	3	3	-	-	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	15	CO1, CO2, CO3	L3,L3,L3
CIA Exam – 2	15	CO4 ,CO5, CO6	L3,L3,L3
CIA Exam – 3	15	CO7 ,CO8, CO9	L3,L3,L3
Assignment - 1	05	CO1, CO2, CO3	L3,L3,L3
Assignment - 2	05	CO4 ,CO5, CO6	L3,L3,L3
Assignment - 3	05	CO7 ,CO8, CO9	L3,L3,L3
Seminar - 1	_		
Seminar - 2	-		
Seminar - 3	-		
	-		
Other Activities – define –		CO1 to Co9	L2, L3, L4
Slip test			
Final CIA Marks	20	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	20 Marks
4	Internal Assessment	40 Marks
5	SEE	80 Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 01: Determination of pH, Acidity and Alkalinity

-	Experiment No.:	1	Marks		Date		Date			
				F	Planned		Conducted			
1	Title	То	Fo measure the pH of the water using pH meter							
2	Course Outcomes	stu sar	student will be able to analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity							

_

3	Aim	To measure	the pH of the given sa	ample					
4	Material / Equipment	Dig	gital pH meter and bea	akers (250ml)					
	Required	• Dis	tilled water Buffer so	lutions pH-4,					
		• nH-	-7 and H-9.2	1					
5	Theory, Formula Principle, Concept	Measuremer analysis. Pra base, neutral	nt of pH is one of t actically, every phase lization, water softeni	he most important e of water supply a ng, precipitation, co	and frequently used tests in water nd waste water treatment, e.g. acid agulation, disaffection and corrosion				
		control is p depending u pH of a solu	H dependent. More pon pH. ution is defined as th	 over many chem ne negative logarith 	nical and biochemical reactions are m (to the base 10) of hydrogen ion				
		concentratio	n. It may be mathema	tically stated as					
		$pH=-log_{10}$	pH= $-\log_{10} [H^+]$ Similarly, pH of a solution is defined as						
		pOH= -log ₁	₀ [OH ⁻]						
6	Procedure	pOH= -log ₁₀ [OH ⁻] A) Instrument calibration: Connect the three pin plug to 230 V mains. Remove the electrode from storage solution and rinse with distilled water. Dry the electrode gently, blotting with a soft tissue paper. Take the buffer solution in a clean glass beaker. Dip the electrode in the solution and set the temperature of the solution using "temperature C knob". Adjust 'standardize' knob so that the display reads the exact the value of the buffer solution. Standardize the instrument with electrode immersed in a buffer solution, within 2 pH units of sample ph. Remove the electrode from a buffer solution, rinse thoroughly with distilled water and finally dry it. Immerse the electrode in another buffer solution, having the pH 2 units higher than that of the experimental solution. Now the reading should be within 0.1 units for the pH of the second buffer. Otherwise, look for trouble with the electrode; switch off the instrument when not in use. Sample analysis : Now, immerse the electrode in a solution of unknown pH, taken in a beaker. Establish the equilibrium between the electrode and sample. By stirring the sample to ensure homogeneity (1 min). Switch on the instrument and read the pH. Again immerse in a fresh portion of the same sample and read the pH. In this pH meter, pH scale may be read off either in pH numbers or in mili volts for which a separate arrangement has been kept.							
7	Diagram								
8	Observation Table	Sl.No	PH value by paper method	PH value by instrument method					
		Sample 1							
		Sample 2			1				
		'							

9	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	-pH of the given sample of water = Sample No. 1 =
		Sample No.2 =
12	Application Areas	Evaluate chemical characteristics of water
13	Remarks	
14	Faculty Signature	
	with Date	

-	Experiment No.:	1	larks		Date Planne	ed		Date Conduct	ed	
1	Title	Acidity	of the give	n sampl	e	I				
2	Course Outcomes	student sample	will be able viz. pH, acidi	to analy: ty, alkali	se the ch nity	emical c	haractei	ristics of a	a given \	water
3	Aim	Determi	nation of Aci	dity of th	ne given :	sample				
4	Material / Equipment Required	•	Burette Conical flask Pipettes .							
5	Theory, Formula, Principle, Concept									
6	Procedure	• • • • • •	 Take 100 ml of the given sample in a conical flask. Add 1 drop of 0.1N sodium thiosulphate solution to remove the residual chlorine if present. Add 2 drops of Methyl orange, the sample turns pink. Proceed with titration until the colour changes to yellow. Note down the volume of the NaOH added (V₁). Take another conical flask containing 100ml of water sample, add 2 or 3 drops of phenolphthalein. Proceed with titration until the sample turns pink. Note down the total volume of NaOH added (V₂). 							
7	Diagram									
8	Observation Table	Sampl e details	Volume o the sample (ml)	f Methy indica	l tor	orange	Phe	nolphtha indicator	lein	
				Initial	Final	NaOH	Initial	Final	NaOH	
						used	Final		used	
						(ml)			(ml)	

9	Sample Calculations	Mineral acidity due to mineral acids (as CaCO3) (mg/l) = $(V_1 \times 1000)/ml$					
		of sample taken					
		CO_2 acidity due to CO_2 (as CaCO3) (mg/l) = (V ₂ x 1000/ml of					
		sampltaken					
10	Graphs, Outputs	• _					
		• _					
11	Results & Analysis	Mineral acidity (mg/l) = CO ₂ acidity (mg/l) =					
		Total acidity as $(CaCO_3) = Mineral acidity + CO_2 acidity.$					
		•					
12	Application Areas	Evaluate chemical characteristics of water sample					
13	Remarks						
14	Faculty Signature						
	with Date						

-	Experiment No.:	1 M	arks		Date Planne	ed		Date Conduct	ed	
1	Title	Alkalinit	y of the giver	ı sampl	e					
2	Course Outcomes	student v sample v	will be able to /iz. pH, acidit	o analys y, alkaliı	se the ch nity	emical c	haracter	istics of a	a given v	water
3	Aim	Determir	nation of Alka	alinity of	^r given sa	mple				
4	Material / Equipment Required	• E • (• F	 Burette Conical flask Pipettes . 							
5	Theory, Formula, Principle, Concept									
6	Procedure	 Take 100 ml of the given sample in a conical flask. Add 1 drop of 0.1N sodium thiosulphate solution to remove the residual chlorine if present. Add 2 drops of Methyl orange, the sample turns pink. Proceed with titration until the colour changes to yellow. 								
		 Note down the volume of the H₂so₄ added (V₁). Take another conical flask containing 100ml of water sample, add 2 or 								
		•	3 arops of ph Proceed with	enolphi titratio	nalein. n until th	e sample	e turns n	ink		
		•	Note down th	ne total	volume	of NaOH	added (V ₂).		
7	Diagram									
8	Observation Table	Sampl e details	Volume of the sample (ml)	of Methyl orange Phenolphthalein le indicator indicator						
				Initial	Final	H₂so₄ used	Initial Final	Final	H₂so₄ used	

					(ml)			(ml)			
9	Sample Calculations	1) Phenolphthalein P= V ₁ × <u>Normali</u>	n alkalini <u>y of H</u> 2S	ty (P) mg <u>SO_A×100</u>	g/lit as C 0×50/ V	CaCO3 Ol of sar	nple tak	e <u>n</u>			
		2) Total alkalinity	(T) mg/l	$\frac{\pi}{100}$ it as Ca($CO_3T = V$	V ₂ × <u>Nor</u>	mality o	of H ₂ SC	$\underline{\mathbf{D}}_{\mathbf{A}}$		
		×1000×50/ Vol of	sample ta	aken	5	2	5	4	<u>+</u>		
			1								
		<u>For tap water</u>									
		1) Phenolt	hthalein	alkalin	itv (P)=	=		r	ng/l as		
			CaCO2								
		CaCO ₃	CaCO3								
		2) Total alkalinity (T) = mg/l as CaCO ₃ .									
		TAP WATER: 1	(AP WATER: 1) Phenolphthalein alkalinity (P) =								
		mg/l as CaCO3	/	1		2					
		2) Tot	al alkalin	ity (T) =	:		mg/	'l as Ca	CO_2		
		BORE WATER	1) Pheno	Inhthalei	n alkalii	nity (P) =	υ = σ/	l as Ca			
		DORE WITER.		ipititutei	in unturn	inty (1)	<i>5</i> ′	i us Cu	003		
		2) Te	otal alkal	inity (T)	=		m	g/l as C	aCO ₃		
									5		
10	Graphs, Outputs	• -									
11	Results & Analysis	1)Phenolp	hthalein	alkalinity	y (P)=		mg/l	CaCO ₃			
		2)Total all	calinity (Г) =			mg/l as (CaOC ₃			
12	Application Areas	Evaluate chemical	character	istics of v	vater sar	nple					
13	Remarks										
14	Faculty Signature										
	with Date										

Experiment 02 : DETERMINATION OF TOTAL HARDNESS OF WATER SAMPLE

-	Experiment No.:	2	Marks		Date		Date				
	-				Planned		Conducted				
1	Title	Total	otal Hardness								
2	ourse Outcomes student will be able to analyse the chemical characteristics of a given water sample viz. Total hardness, calcium and magnesium hardness										
3	Aim	To de	o determine the Total Hardness of the given sample								
4	Material /	•	Lab Manua	al		<u> </u>					
	Equipment	•	Burette, conical flask, pipette								
	kequirea	Ammonia buffer solution									
		•	Erichrome	black T indic	ator						

		Standard EDTA solution as titrate (0.1M)
5	Theory, Formula,	Hardness in water is that characteristics which prevents the formation of sufficient
	Principle, Concept	lather or foam, when such hardness are mixed with soap. Hardness is a measure of
		the ability of water to cause precipitation of insoluble calcium and magnesium salts
		of higher fatly acids from soap solutions.
		Hardness is defined as the characteristics of water which represents the total concentration of calcium and magnesium ions expressed as $CaCO_3$ and hence
		hardness is always reported as molar equivalent of CaCO ₃ in mg/lt. Hardness of
		water is not a specific element but variable accounted by a complex mixture of cat ions and anions
6	Procedure,	<u>PROCEDURE:</u> 1) TOTAL HARDNESS
		Total 100ml of sample in a clean conical flask.
		Add 1ml of ammonia buffer solution.
		Add 1 pinch of Erichrome black-T indicator colour of the solution turns to
		wine red.Titrate against std EDTA solution till the colour changes to wine
		red to clear blue note down the burette reading (A-B).
		Total hardness in mg/lit as caco3 = ((A-B)×1000)/ (ml of sample taken).
		2) PERMANENT HARDNESS
		• Boil the sample continuously until all the co2 gets expelled from the
		surface.
		Cool the sample.
		Take 100ml of sample in a clean conical flask.
		Add 1ml of ammonia buffer solution.
		Add 1 pinch of Erichrome black-T indicator colour of the solution turns wine
		red.
		• Titrate against std EDTA solution till the colour changes to wine red to
		clear blue note down the burette reading (A-B).
		 Permanent hardness in mg/lit as CaCO₃ = ((A-B)×1000)/ (ml of sample
		taken).
7	ыоск, Circuit, Model Diagram,	
	Reaction Equation, Expected Graph	
8	Observation Table,	1) TOTAL HARDNESS:

SI no	Sample	e Bu	rette read	Total hardness in mg/l as CaCO ₃			
		Initial reading	Final reading	ml of std EDTA used			
SI no	Sample	Bu	Burette reading				
		Initial reading	Final reading	ml of s EDTA used	td		
	Permanent hardness in mg/lit as CaCO ₃ = ((A-B)×1000)/ (ml of sample) =mg/l as CaCO ₃ Temporary hardness = total hardness – permanent hardness						
Permane = Tempora	ent hardnes ary hardnes	s in mg/lit as Ca mg/l as C s = total hardne	aCO ₃ = ((/ aCO ₃ ss – perm aCO-	A-B)×1000)/ anent hardn	(ml of sample) ess		

		Temporary hardness = total hardness – permanent hardness								
		=mg/l as CaCO ₃								
10	Graphs, Outputs									
11	Results & Analysis	 Total hardness of given sample =mg/l as CaCO₃ 								
		 Permanent hardness of given sample=mg/l as CaCO₃ 								
		 Temporary hardness of given sample=mg/l as CaCO₃ 								
12	Application Areas	Analysis of water auality								
13	Remarks									
14	Faculty Signature with Date									

-	Experiment No.:	2	Marks		Date Planned		Date Conducted					
1	Title	CALC	UM AND M	AGNESIUM	HARDNESS		1					
2	Course Outcomes	stude samp	dent will be able to analyse the chemical characteristics of a given water nple viz. Total hardness, calcium and magnesium hardness									
3	Aim	To de	determine the calcium and magnesium hardness of given water sample.									
4	Material / Equipment Required	•	 Lab Manual Burette, conical flask, pipette Ammonia buffer solution Erichrome black T indicator Standard EDTA solution as titrate (0.1M) 									
5	Theory, Formula, Principle, Concept	Unde magn of inc	Inder highly alkaline condition (pH=12-13), Magnesium precipitates as nagnesium hydroxide and calcium forms complexes with EDTA in presence f indicator which combines with calcium only									
6	Procedure	<u>CALC</u>	Take 100n Add 1ml or Add 1 pir the solutio Titrate it a blue. Note Calcium ha Magnesiur hardness	NESS: In of water sa f 1N NaOH so nch of Patten n turns to wir gainst Std. E down the bu ardness in mo n hardness	imple in a clea olution into th a and Reeder he red. EDTA till the rette reading g/l as CaCO ₃ in mg/l as	an conical fla e sample. 's indicator ir colour chang (A-B) = (A-B)×100 CaCO ₃ = T	sk. nto the solutio jes from wine j0/ml of samp otal hardnes	on. Colour of red to clear le taken s – Calcium				
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Observation Table											

					1		
		Sl no.	Buret readir	te ng	Calcium hardnes s	magnesium hardness	
			IR	FR			
		1					
		2					
9	Sample Calculations	•	Calci	ium ha	rdness of	given sample =	
		•	Mag	nesium	n hardness	of given sampl	e =
10	Graphs, Outputs						
11	Results & Analysis						
12	Application Areas	To che	ck qua	ality of v	water		
13	Remarks						
14	Faculty Signature with Date						

Experiment 03 : DISSOLVED OXYGEN TEST BY WINKLER'S METHOD OR MODIFIED AZIDE METHOD

-	Experiment No.:	3	Marks		Date Plannod		Date Conducted		
1	Title	Diss							
2	Course Outcomes	Stude	ents are able	to determine	e Dissolved c	xvaen in a a	iven sample		
3	Aim	To fi	nd the quant	ity of dissol	ved oxygen	present in th	ne given sam	ple	
4	Material / Equipment Required	•	 Manganese sulphate Alkali iodide Azide reagent Starch indicator Concentrated sulphuric acid Standard sodium Thiosulphate (0.025N) 						
5	Theory, Formula, Principle, Concept	Oxygo which acidifi equiv Na ₂ S MnSC	en present ir precipitates cation mang alent to BOE 2 ^O 3 (0.025N O ₄ reacts with	n sample oxic as a brown h ganese react content in t lo using star n alkali to forn	lizes the diva ydrated oxide s to divalen he sample. ch as indica n white precip	alent mangar e after additic t static acid The liberated tor. If oxyge bitate Mn(OH	nese to its hig on of NaOH a liberates io l iodine is titu n absents in) 2 [.]	gher valiancy nd K of upon dine from K rated against sample the	
6	Procedure	•	Take a cle Tap the ne Add 2ml of the BOD b while addin Re-stoppe Mix the co If oxygen colour ma for all oxyg a clear liqu	ean and dry B eck sample of of manganese oottle. The tap ng the above er with care to ontent properl is present th nganese oxic gen to react, uid at the top	OD bottle and the BOD bottle and e sulphate are water of the said solution exclude air le y by repeated en the mang le (MnO ₃). A the chemical portion.	d collect 300 tle to expel a nd 2ml of alka pipette shoul bubble. dly inverting t anese ion ge fter taking a ppt is allowe	ml of water sa ir bubble if an ali iodide azic Id be below th he bubble 10 tts converted nd allowing s ed to settle th	ample in it. ny. de solution to ne liquid level -15 times. into a brown sufficient limit ereby having	

		A th A ag th cc	2ml of con e bottle and dark yello gainst sodiu e colour ch Now add so ontinue titra	c. sulphuric acid an d inverting it. w colour solution um this sulphate sol anges to pale yello starch as an indica tion till the colour d	id mix the samp is obtained w lution by taking w (strew yellow ator, the colou isappears.	ole cor /hich i 203m w). ır of s	npletely by re-stopping s immediately titrated l in a conical flask until solution turns to blue,					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph											
8	Observation Table	Trial no	Volume of sample	Burette	e reading		Sodium thiosulphate rundown					
				Initial reading Final Av								
				reading ^g								
9	Sample Calculations	Dissolved sample tal	oxygen (n ken)	ng/l) = ((A-B)×norn	nality of sodiur	n Thic	osulphate×8000)/(ml of					
		Dissolved	oxygen (m	g/lit) for given wate	r sample=		mg/l.					
10	Graphs, Outputs											
11	Results & Analysis	Dissolved sample=_ sample=_	oxyge	en present mg/lit. [mg/lit.	in the Dissolved oxyge	giv en pre	en tap water sent in the given water					
12	Application Areas	Analysis o	f water									
13	Remarks											
14	Faculty Signature with Date											

Experiment 04 : BIOCHEMICAL OXYGEN DEMAND

-	Experiment No.:	3	Marks		Date Planned		Date Conducte	d				
1	Title	Bioch	emical Oxyg	en Demand				·				
2	Course Outcomes	Stude	ts are able to determine Dissolved oxygen in a given sample									
3	Aim	To de	termine the b	mine the biochemical oxygen demand in the given sample of water.								
4	Material / Equipment	•	Lab Manu BOD bottle	al e 300 capacit	у.							
	Required	•	Incubator,	to be control	led at 2 ⁰ C±1 ⁰	C.						
		•	Burette,									
		•	Pipette an	d								
		•	Measuring	jar								
5	Theory, Formula	BOD	is defined	as the amou	int of oxvaer	required b	v micro or	aanisms	while			

	Principle, Concept	stabilizing biological conditions. The BOD The pollution load of The degree of pollut capacity and Efficiency of waste w Since the test is ma consumed by bacteri necessary to provic microbial growth in solubility of o2 in w demand does not inc	ly decomposable or test is widely used to waste water, tion in lakes and strea vater treatment metho inly a bio-assay proc a while stabilizing or le standard conditio hibiting substances vater, strong wastes rease the available C	ganic matter in a v determine ams at any time and ods. cedure, involving mea ganic matter under ac ons of nutrient supp and temperature. E are always diluted 0 ₂ . A mixed group of o	vaste under aerobic their self purification asurement of oxygen erobic conditions, it is oly, ph, absence of Because of the low to ensure that the organisms should
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 Aerate the compressed the tempera Add 1ml of ferric chlorid In the case bacterial posewage is compressed to bacterial posewage is complexed. Neutralize the The sample chlorine removed. Take 50ml complexed. Add about 1 indicator. Cathe sample a Samples have or some other. Make severa depletion of lafter 5 days as follows Siphon out flask half the sample. Diluwell. DO (10%) = 	required volume of a ir for about 15 min ture near 20 ⁰ C. phosphate buffer, m le solution for each lit e of the wastes whi llution, add seed to onsidered sufficient for PLE e sample to pH arour e should be free from ove it by using sodium of the sample and aci kg KI. Titrate with s lculate the volume of nd add accordingly to ring high DO content er reason, reduce the al dilutions of the pref DO in dilution water b of incubation should seeded dilution water te to the desired volume. Act te to the desired volume. ml	distilled water in a control attain DO satural agnesium sulphate, atter of dilution water. If the are not expected the dilution water. Go or 100ml of dilution water. Go or 100ml of dilution water. Go of 100ml of dilution water. If in Thiosulphate solution dify with addition of 1 sodium thiosulphate of sodium thiosulphate of sodium thiosulphate of sodium thiosulphate i.e. DO 9mg/I, due to DO content by aeration treated sample so as but not less than 2mg not be less than 1mg er in a measuring co ld the required quant ume by siphoning di	ontainer by bubbling ition. Try to maintain calcium chloride and Mix well. d to have sufficient enerally, 2ml settled ater. caline or acidic. f it contains residual on as follows 10ml 1+1 acetic acid. 0.025N using starch e required per ml of sted for BOD. o either algal growth ng the samples. to obtain about 50% and the residual O ₂ g/lit. prepare dilutions ylinder or volumetric ity of carefully mixed lution water and mix
-	Ploole Circuit				
1	Model Diagram, Reaction Equation, Expected Graph				
8	Observation Table				
-	Look-up Table	Sample	Durotto readizar		Volumo(rel)
	Output	Sample	Durette reading		volume(ml)
	Calpai		Final reading	Initial reading	

		Blank							
		10% dilution							
		20% dilution							
9	Sample	C ₅ =ml							
	Calculations	D ₅ (10%) =ml							
		D ₅ (AV %) =ml							
		BOD mg/I= ((D ₅ -D ₀)-(C ₅ -C ₀))/ (mI of sample used in decimals)							
		Where: D_5 and $D_0 = DO$ in sample after 5 days and initial day respectively							
		C ₅ and C ₀ =DO in blank after 5 days and initial day respectively							
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas	Water quality analysis							
13	Remarks								
14	Faculty Signature with Date								

Experiment 05 :DETERMINATION OF CHLORIDE BY ARGENTOMETRIC METHOD OR MOHR'S SALT METHOD

-	Experiment No.:	1 M	larks		Date		Date			
				F	Planned		Conducted			
1	Title	Chlorides	lorides by Argentometric methods							
2	Course Outcomes	Students a	re able to de	termine chl	orides in a	i given sample	e			
3	Aim	To determ	determine the chloride contents in the given sample of water							
4	Material / Equipment Required	• La • Bu • co	b Manual urette, mical flask a	and measur	ring jar.					
5	Theory, Formula,	Chloride id	oride ion is determined by Mohr's method, titration with standard silver nitrate							
	Principle, Concept	solution in by the fo chromate (ution in which silver chloride is pipette first. The end point of titration is indicated the formation of red silver chromate from excess AgNO ₃ and potassium romate used as indicator in neutral to slightly alkaline solution.							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	T S S S T S T T C T O T O C V	 Take 100ml of the sample in the conical flask. Add 2 to 3 drops of potassium chromate indicator into the solution and shake well. The solution turns to pale yellow. Titrate it against standard silver nitrate solution (0.0141N). Continue the titration till the end point of pale yellow to brick red is reached. Note down the reading (i.e. volume of silver nitrate added-A) Continue the same procedure for 100ml distilled water and note down the volume of silver nitrate-(B). 							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Burette: Ag Conical fla Indicator: I End point:	rette: AgNO ₃ – 0.0141N nical flask: water sample licator: K ₂ CrO ₄ (potassium chromate, yellow) d point: reaction completion point colour changes from yellow to brick red.							
		Sample	Trial no	Vol of	Observ	ation	AgNO ₃	Chloride		
L	1	L	1	1	1		1	1		

		details	sample taken (ml)			solution used	(mg/l)
				Initial reading	Final reading		
8	Observation Table, Look-up Table, Output			1		1	
9	Sample Calculations	Cl (mg/l) = ((A-B)×(nor (mg/l) = ((A-B)×(norma	mality of AgN ality of AgNO	10 ₃ ×35.45× ₃ ×35.45×10	1000))/ (ml o 000))/ (ml of :	of sample) sample)	
		CI (mg/I) = ((A-B)×(nor	mality of AgN	10 ₃ ×35.45×	1000))/ (ml o	of sample)	
		Sample 01= Sample 02=					
		Sample 03=					
10	Graphs, Outputs						
11	Results & Analysis	Chloride content in give Sample 01:n Sample 02:n Sample 03:n	en water ng/l. ng/l. ng/l.				
12	Application Areas						
13	Remarks Eaculty Signature						
14	with Date						

Experiment 06 : AVAILABLE CHLORINE IN BLEACHING POWDER

-	Experiment No.:	1	Marks		Date Planned		Date Conducted				
1	Title	Availa	able chlorine in bleaching powder								
2	Course Outcomes	Stude	ents are able	nts are able to determine Available chlorine in a given sample							
3	Aim	To de	etermine the Available chlorin in the given sample of water								
4	Material /	•	Conical flask, Burette,								
	Equipment	•	Pipette an	d Volumetric	flask						
	Required	•	Bleaching	powder,							
		•	Glacial ac	etic acid,							
		•	Potassium	iodide crysta	als or powder,						
		•	Standard s	sodium thiosu	Iphate (0.1N),	,					
		•	Starch ind	icator solutior	า						
5	Theory, Formula, Principle Concept	Bleac	hing powder	is nothing bu	t chlorinated r	inse or CaO	Cl ₂ (calcium	oxychloride).			
		This o	compound is	a white amor	phous powder	with a pung	ent smell of.	When freshly			
		made	, it contains	about 30-35	% of available	e chlorine. I	t is however	an unstable			
		comp	npound and on exposure to air, light and moisture it rapidly lose its chlorine								
		conte	ent. Bleaching powder is used for treating small water surplus swimming pools								
		and it	can also be	used as eme	rgency disinfe	ctant.					

6	Procedure, Program, Activity, Algorithm, Pseudo Code	•	 Measure exactly 5gm of given bleaching powder and dissolve it completely in 1000 ml of distilled water. Take 100ml of solution and add 1g of KI crystals and about 5ml of glacial acetic acid. Leave the sample for 10 min for reaction. Titrate the solution against standard sodium thiosulphate of 0.1N until the colour turns to pale yellow. Add 2 to 3 drops of starch indicator solution and continue the titration till the solution turns blue to colourless. Note down the burette reading (A). Repeat the titration for distilled water (B). 											
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	SI No	Sample	Burette read	ing	ml of sodium thiosulphate used	Available Chlorine							
				Initial Final										
				reading reading										
				reading reading										
								-						
								-						
8	Observation Table, Look-up Table, Output							<u></u>						
9	Sample Calculations	Avai	lable chl	orine in ble	eaching pow	$der = ((A-B) \times 0)$.1×35.45×10	00)/						
	Calculations	(voli Avai	ume of san lable chl	nple) orine in ble	eaching now	der = $((A-B) \times 0)$	1×35 45×10	000)/						
		(volı	ume of san	nple)	acing pour									
		=	<u>} alala</u>	ľ	ng/l.)×100								
		% 01 =	chlorine =	= ((available c	%)×100								
10	Graphs, Outputs													
11	Results & Analysis													
12	Application Areas	Anal	ysis of chei	mical characte	ristics of water									
13	Remarks]						
14	⊦aculty Signature with Date													

Experiment 07 : <u>RESIDUAL CHLORINE</u>

-	Experiment No.:	1	Marks		Date		Date			
					Planned		Conducted			
1	Title	Resic	dual chlorine in bleaching powder							
2	Course Outcomes	Stude	dents are able to determine Residual chlorine in a given sample							
3	Aim	To de	determine the Available chlorine in the given sample of water							
4	Material /	•	Conical fla	sk, Burette,						
	Equipment	•	Pipette and Volumetric flask							
	Required	•	Bleaching	powder,						

		•	 Glacial acetic acid, Potassium iodide crystals or powder, Standard sodium thiosulphate (0.1N), Starch indicator solution 									
5	Theory, Formula, Principle, Concept	depe	DOSAGE (nds upon t	OF CHLORINE he amount of in	The amoun organic impur	t of chlorine require ities and organic imp	ed for the work ourities prese	vater nt in				
		it wh	en chlorine	is added to wa	ater it first rea	acts with inorganic ir	npurities like	Sr⁻,				
		Mn ^{2⁺}	²⁺ , NO ²⁻ , Fe ²⁺ , etc which converts the chlorine into chloride. After this point									
		exce	ss chlorine	is consumed	by ammonia	to form chloramines	. After this p	point				
		chlor the	ine will read above read	ct with organic	impurities pres s chlorine de	sent in water. The ch mand of water on	nlorine used i ce after chlo	n all				
		dema	and is satis	fied the chlorine	e will appear t	to be free chlorine (r	esidual chlor	ine).				
		The f	function of	free residual ch	lorine is to imr	mediately kill the pat	hogens wher	e as				
6	Procedure	Cl wi	Il provide lo	ong term germici	de effect	flool and add a ni	ach of notace					
	Program, Activity,		iodide.	IOUTIL OF Sample		nask and add a pi	nen or potas:	sum				
	Algorithm, Pseudo Code		• Add 5	ml of acetic acio	l and allow the	reaction to complete	e.					
	couc		Titrate	e the sample ag	ainst 0.0025N	I of sodium thiosulph	nate solution	until				
			Add 1	ml of starch sol	ution, blue colo	our appears then cor	ntinue the titra	ation				
			until th	e blue colour di	sappears (A-B).	1					
7	Block, Circuit, Model Diagram	SI	Sample	Burette i	eading	ml of sodium	Residual					
	Reaction Equation,	No				thiosulphate used						
	Expected Graph						Chlorine					
				Initial reading	Final							
					reading							
					localing							
								-				
								-				
								-				
8	Observation Table, Look-up Table,											
	Output											
9	Sample Calculations	Resi	dual chlori	ine = $((A-B) \times (A-B))$	0.0025×35.45	$\times 1000)/(volume of$	f sample).					
	outoutations	Resi	dual chlori	$ine = ((A-B) \times (A-B)) \times (A-B) \times (A-B$	0.0025×35.45	×1000)/ (volume o	of sample).					
10	Graphs Outputs	= 		n	ig/l							
11	Results & Analysis	Resid	dual chlorin	e = ((A-B)×0.00	25×35.45×100	00)/ (volume of samp	le).					
		=		mg/l.			<i>.</i>					
10	Application Areas	Analy	usis of char	mical character	istics of water							
13	Remarks		ysis ur crief	nical cridiacler								
14	Faculty Signature											
	with Date											

Experiment 08 : *DETERMINATION OF SOLIDS IN SEWAGE*:

-	Experiment No.:	1	Marks		Date Planned		Date Conducted		
1	Title	Tota	l soilds				conducted		
2	Course Outcomes	Stude	ents are able	to determine	total solids in	a given sam	ple		
3	Aim	To de	termine the t	otal solids in	he given san	nple of water	•		
4	Material / Equipment Required	Evap oven	orating dish, and desiccat	ors.					
5	Theory, Formula, Principle, Concept	Total filtere	solids are de d sample.	etermined as a	a residue left	after evapor	ation and dryi	ng of the un-	
6	Procedure, Program, Activity, Algorithm, Pseudo Code	•	 Take 100ml of well mixed sample and pour it into evaporating dishes which is already been heated in an oven at 103⁰C for removing the moisture and desiccated for balancing the temperature and weighed (W₁). 						
		•	 Heat the sample until it is dried (24hrs). Take out the evaporating dish ported in a desiccators and take out the final reading (W₂). 						
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8	Observation Table, Look-up Table,	Weig	ht of the emp	oty dish, W ₁ =	g.				
	Output	Weig	nt of the sam	ple with dish (oven dried),	W ₂ =	g.		
		Volu	me of the sar	nple taken, V	=	g			
9	Sample Calculation	Initial	weight of the	e evaporating	dish (W_1) =_		g		
		Final	weight of the	evaporating	dish (W ₂) =		g.		
		Tota	solids = ((W		:1000)/ (volur	ne of sample	e).		
				Ζ Ι'		F -	,		
		=		mg/l.					
10	Graphs, Outputs								
11	Results & Analysis	Total	solids of a	given sample	e =		mg/l.		
12	Application Areas	Analy	sis of chemi	cal character	istics of wate	er			
13	Remarks								
14	Faculty Signature	h							

Experiment 09 : Total suspended solids

-	Experiment No.:	1	Marks		Date Planned		Date Conducted			
1	Title	Tota	al suspend	ed solids	· · · ·			·		
2	Course Outcomes	Stude	udents are able to determine total solids in a given sample							
3	Aim	To de	o determine the total solids in the given sample of water							
4	Material / Equipment Required	Evap oven	vaporating dish, oven and desiccators.							
5	Theory, Formula, Principle, Concept	A we filter repre	well mixed sample is filtered through a filter paper and the residue retained on the ilter is dried to a constant weight 103°c. The increase in weight of filter paper epresents the total suspended solids .							
6	Procedure,	•	Take a wa	ttman filter pa	aper.					
16('\/	176				(`0	nvriant (C)2017	CAAS All rights	racarvad		

	Program, Activity, Algorithm, Pseudo Code	 Place in an oven and heat it at 103⁰C to remove the moisture. Take a filter paper from the oven placed in desiccators to balance the temperature and take the initial weight (W₁). Pour known volume of well mixed sample to the filter paper. Once after the completion of filtration take the filter paper place it in an the oven and heat it for 103⁰ C for 1 hour. Take out the filter paper from oven and place it in the desiccators to balance the temperature and note down the final reading (W₂).
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	Empty weight of filter paper, $W_1 = \underline{g}$. Weight of filter paper + suspended solids, $W_2 = \underline{g}$. Volume of sample= \underline{ml} . Total suspended solids = ((W_2 - W_1)*1000*1000)/ (volume of sample). = \underline{mg}/l .
9	Sample Calculation	
10	Graphs, Outputs	
11	Results & Analysis	suspended solids of a given sample =mg/l.
12	Application Areas	Analysis of chemical characteristics of water
13	Remarks	
14	Faculty Signature with Date	

Experiment 10 : TOTAL DISSOLVED SOLIDS

-	Experiment No.:	1	Marks		Date Planned		Date Conducted			
1	Title	Tota	I Dissolved	solids						
2	Course Outcomes	Stude	udents are able to determine total dissolved solids in a given sample							
3	Aim	To de	determine the total dissolved solids in the given sample of water							
4	Material / Equipment Required	Evap oven	/aporating dish, /en and desiccators.							
5	Theory, Formula, Principle, Concept	A we filter repre	well mixed sample is filtered through a filter paper and the residue retained on the ilter is dried to a constant weight 103°c. The increase in weight of filter paper epresents the total suspended solids							
6	Procedure, Program, Activity Algorithm, Pseudo Code	Take dissec volum and w 103 ⁰ C	an evaporati tor to balanc e of well mix eighed evapo c and desicc	ng dish, heat the tempe ed sample ar prating dish. T ated for bala	t it in the over rature and ta d filter it from the filtrate left ancing the te	n to remove ke the initial a filter pape over in an e mperature a	the moisture, weight W ₁ . r which is pre vaporating di and weight ta	place it in a Take known viously dried sh is dried at ake the final		

	v	veight W ₂ .							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8	Observation Table	mpty weight of evaporating dish, W ₁ =g.							
	Look-up Table, Output	Veight of sample with dish after filtration (after oven drying), W_2							
	=	<u> </u>							
	Volume of sample=ml								
	T	otal dissolved solids = ((W ₂ -W ₁)×1000×1000)/ (volume of sample).							
	=	mg/l.							
9	Sample Calculation								
10	Graphs, Outputs								
11	Results & Analysis	Total dissolved solids =mg/l.							
12	Application Areas	Analysis of chemical characteristics of water							
13	Remarks								
14	Faculty Signature with Date								

Experiment 11 : TOTAL FIXED AND VOLATILE SOLIDS

-	Experiment No.:	1	Marks		Date		Date				
1	Titlo	- ,			Planned		Conducted				
1		l ota	I fixed and	Volatile sol	Ids						
2	Course Outcomes	Stude	ents are able	to determine	total solids ir	n a given sam	ple				
3	Aim	To de	etermine the t	otal fixed soli	ds in the give	n sample of v	water				
4	Material /	1. Eva	aporating disl	h.							
	Equipment Required	2. Ov	en 103 ⁰ C	0							
		3. Mu	Muffle furnace 600 ⁰ C								
		4. De	Desiccators								
		6. Wa	Water Bath								
5	Theory, Formula,	Total	tal volatile solids and fixed solids are determined as residue remaining after								
	Principle, Concept	evapo	oration, drying	g at 103 ⁰ C a	nd ignition at	600 ⁰ C.					
6	Procedure, Program, Activity, Algorithm Psoudo	•	A clean po in air, it is o	orcelain dish i cooled in a d	s ignited in a esiccators an	muffle furnad d weighed (V	ce and after p V ₁).	artial cooling			
	Code	•	A 100 ml transfer of	of well mixe all suspende	ed sample (g ed matter) is	raduated cyl placed in th	inder in rinse e dish and e	ed to ensure vaporated at			
			100 ⁰ C on ⁹	water bath, fo	llowed by dry	/ing in oven a	it 103 ⁰ C for 1	hour.			
		•	Dry to a c	onstant weigh	it at 103 ⁰ C, c	cool in desicc	ator and weig	hed (W ₂).			
		•	Ignite the constant w	e residue on eight in 10 to	evaporation 15 min.	n at 600 ⁰ C	in the muffle	e furnace to			
		•	Allow the water.	dish to cool	and moister	n the ash wit	h a few drop	os of distilled			
		•	Dry to con	y to constant weight at 104 0 C, cool in a desiccators and weighed (W							
7	Block, Circuit,										

	Model Diagram, Reaction Equation, Expected Graph						
8	Observation Table, Look-up Table, Output	Type of solids	Sample details	Volume of sample, ml	Weight of empty dish (mg)	Weight of empty dish+ Residue (mg)	Residue (mg/l)
9	Sample Calculation1	otal solids (mg = Total volatile s = otal fixed solic =	g/l) = ((W ₂ -W mg colids (mg/l) = mg ds (mg/l) = ((V)/ (volume of s ixed solids. <1000)/ (volum	sample). le of sample).	
10 11	Graphs, Outputs Results & Analysis	The amount is=	of Total,	fixed and wmg/l	volatile solid	ls of the g	iven sample
12 13 14	Application Areas Remarks Faculty Signature with Date	Analysis of ch	emical chara	cteristics of w	rater		

Experiment 11 : TOTAL SETTLEABLE SOLIDS

-	Experiment No.:	1	Marks		Date Planned		Date Conducted		
1	Title	Tota	I Settleable	e solids					
2	Course Outcomes	Stude	udents are able to determine total Settleable solids in a given sample						
3	Aim	To de	determine the total Settleable solids in the given sample of water						
4	Material / Equipment Required	Imho Hold	uhoff cone. olding device .						
5	Theory, Formula, Principle, Concept	The water	The particles in suspensions whose specific gravity greater than that of vater will settle under quiescent conditions						
6	Procedure, Program, Activity, Algorithm, Pseudo Code	•	 Gently fill the Imhoff cone with the thoroughly well mixed sample usua one liter and allow it to settle. After 45 minutes, gently rotate the cone between hands to ensure that solids adhering to the sides are loosened. Allow the solids to settle for 15 minutes more, to make up for a total period 1 hour 						

		Read the vo	• Read the volume of the sludge which has settled in the apex.							
		Express the	results in ml settleab	le solids per liter of samp	le per hour.					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph									
8	Observation Table, Look-up Table, Output	Sample details	Sample details	Total settleable solids ml/l/hour						
9	Sample Calculation	Total settleable sol	ids (mg/l)= (ml of s	solids x 1000)/ml of sar	nple.					
10	Graphs, Outputs									
11	Results & Analysis	Total settlable solid	ds of the given sam	ple is =	_ mg/l.					
12	Application Areas	Analysis of chemica	l characteristics of w	vater						
13	Remarks									
14	Faculty Signature with Date									

Experiment 12: TURBIDITY DETERMINATION BY NEPHELOMETER

-	Experiment No.:	1	Marks		Date Planned		Date Conducted				
1	Title	Turb	idity of a gi	iven sample	etannea		conducted				
2	Course Outcomes	Stude	ents are able	to determine	to turbidity in	a given sam	ole				
3	Aim	To de	letermine the total turbidity in the given sample of water								
4	Material / Equipment Required	•	Nephelo-turbidity meter.Beaker.Pipette.								
5	Theory, Formula, Principle, Concep	When light is turbid scatte	en light is passed through a sample having suspended particles, some of the t is scattered by particles. This scattering of light is generally proportional to the vidity. The turbidity sample is of thus measured from the amount of light ttered by the sample, taking a reference with standard turbidity suspension.								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	•	 Switch on the instrument and allow it to warm up. Take the standard suspension of the sample and calibrate the instrument. After the calibration place the cattle with the sample and note down the turbidity directly from the instrument. 								
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph										
8	Observation Table, Look-up Table, Output	Slno	D. Sam	ple details	Turbidit	y (NTU)					

9	Sample Calculation		
10	Graphs, Outputs		
11	Results & Analysis	The turbidity of the given sample is	NTU.
12	Application Areas	Analysis of chemical characteristics of water	
13	Remarks		
14	Faculty Signature		
	with Date		

Exeriment 13: OPTIMUM DOSAGE COAGULANTS

-	Experiment No.:	1	Marks		E Pla	Date		Date Conducted		
1	Title	Jar te	est appara	atus						
2	Course Outcomes	Stude	nts are able	to determ	nine optim	num dosa	ge of coagu	ulants in a give	en sample	
3	Aim	To det	termine the	optimum o	dosage o	f coagular	nts in the gi	iven sample of	water	
4	Material / Equipment Required		 Ja Be Tu pH 	r test appa eakers. irbidity me meter	aratus. ter					
5	Theory, Formula, Principle, Concept	Metal The d good a	salts hydrol ivalent catic absorbents	lyze in pre ons can re and hence	esence of duce the e remove	the natur zeta- pote the suspe	al alkalinity ential, while ended parti	/ to form meta e the metal hy cles by enmes	l hydroxides. droxides are hing them	
6	Procedure, Program, Activity, Algorithm, Pseudo Code	• • • • •	 Measure the turbidity of given sample. Take 1 litre of sample into each of 6 beakers. Switch on the motor and adjust the speed of paddles to 100 rpm.4. Add varying doses of alum solution i.e., 1 ml, 2ml, 3ml, 4ml, 5ml, 6ml to different beakers simultaneously.(The doses vary with turbidity in water sample). Allow flash mix for 1 minute. Reduce the speed of paddles to 40 rpm and continue mixing for 10 minutes. Switch off the motor and allow 20 minutes for settling of flocs. Collect the supernatant without disturbing the sediment and find the turbidity of each beaker. Repeat the experiment with high doses of alum if satisfactory results are not obtained. 							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph									
8	Observation Table, Look-up Table, Output	SL NO.	Vol. of sampl e	Beaker No	Weight of alum added	Initial turbidity NTU	Final turbidity NTU	turbidity removed		

9	Sample	Raw water turbidity (NTU) =					
	Calculation	Raw water pH =					
		Raw water Alkalinity (mg/l) =					
10	Graphs,						
	Outputs						
11	Results &	Ideal dosage of coagulant (mg/l) =					
	Analysis						
12	Application	Analysis of chemical characteristics of water					
	Areas						
13	Remarks						
14	Faculty						
	Signature with						
	Date						

Exeriment 14: DETERMINATION OF SODIUM BY FLAME PHOTOMETER

-	Experiment	1	Marks		Date		Date				
1	NO.: Titlo	lor to			Planned		Conducted				
2	Course Outcomes	Stude	Students are able to determine sodium content in a given sample								
3	Aim	To de	To determine the amount of Sodium present in the given sample solution.								
4	Material / Equipment Required		 Flame photometer Volumetric flasks Pipette 								
5	Theory, Formula, Principle, Concept	Flame mostl the sa residu gives electr back meas and c	lame emission spectroscopy is a type of atomic emission spectroscopy. It is nostly applicable for analysis of alkali and alkali earth metals. In this spectroscopy, ne sample solution of sodium salt is nebulized in to flame, which may produce solid esidue upon solvent evaporation. This solid residue undergoes atomization and ives neutral atoms which may acquire thermal energy from flame and undergoes lectronic excitation. Due to unstable nature of excited state, excited atoms come ack to ground state by emission of absorbed energy as visible radiation. By neasuring the wavelength and intensity of emitted radiation, we can do qualitative nd quantitative analysis respectively.								
6	Procedure,	Prep	aration of st	tandard solu	tions for ca	libration cu	rve:				
	Program,	Disso	lve exactly 1	.88 gm of So	dium chlorid	e in water an	d make up to	o 1 liter. This			
	Activity, Algorithm, Pseudo Code	conta	ins1mg per n	nl (1000 ppm)							
		Estin	nation of So	dium by flar	ne photome	eter:					
		 First, switch on the digital flame photometer followed by the air compressor with the required value (10 bar). Open the gas from the gas cylinder (after the instrument is warmed up for 10 minutes). Initially allow the ion-free water (distilled water) to aspirate in to the flame and set the digital value as 100. Now the instrument is said to be calibrated. After this calibration of the instrument, no adjustment should be made .Introduce the solutions containing different concentrations of Sodium chloride (2, 4, 6, 8, 10µg) to the flame and find out the intensity of emitted light of each solution. Plot a calibration graph between concentration and intensity of NaCl solution which passes through the origin. Finally, introduce the sample of 									

			unknown solution containing sodium into the flame and find out the intensity of emitted radiation. From the intensity, the concentration of unknown solution can be determined							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph									
8	Observation Table, Look-up Table, Output	SL NO.	Concentrati on of NaCl Solution(pp m)	Flame intensity						
9	Sample Calculation									
10	Graphs, Outputs									
11	Results & Analysis	The am	ount of Sodiu	m in the given sa	mplep	pm				
12	Application Areas	Analysis	s of chemical c	haracteristics of w	ater					
13	Remarks									
14	Faculty Signature with Date									

Exeriment 15:DETERMINATION OF POTASSIUM BY FLAME PHOTOMETRY

-	Experiment	1	Marks		Date Planned		Date Conducted		
1	Title	Jar te	est apparatus		T tarifica		Conducted		
2	Course Outcomes	Stude	Students are able to determine potassium content in a given sample						
3	Aim	To de	etermine the a	amount of pota	assium pres	ent in the give	en sample sol	ution.	
4	Material / Equipment Required		 Flame photometer Volumetric flasks Pipette 						
5	Theory, Formula, Principle, Concept	Flame mostl the sa residu gives electr back meas and c	⁻ lame emission spectroscopy is a type of atomic emission spectroscopy. It is nostly applicable for analysis of alkali and alkali earth metals. In this spectroscopy, he sample solution of sodium salt is nebulized in to flame, which may produce solid esidue upon solvent evaporation. This solid residue undergoes atomization and gives neutral atoms which may acquire thermal energy from flame and undergoes electronic excitation. Due to unstable nature of excited state, excited atoms come back to ground state by emission of absorbed energy as visible radiation. By measuring the wavelength and intensity of emitted radiation, we can do qualitative						

6	Procedure, Program, Activity,	Preparation of standard solutions for calibration curve: Dissolve exactly 1.88 gm of Sodium chloride in water and make up to 1 liter. This							
	Algorithm, Pseudo Code	contains1mg per ml (1000 ppm).							
		Estimation of Sodium by flame photometer:							
		 First, switch on the digital flame photometer followed by the air compressor with the required value (10 bar). Open the gas from the gas cylinder (after the instrument is warmed up for 10 minutes). Initially allow the ion-free water (distilled water) to aspirate in to the flame and set the digital value as 100. Now the instrument is said to be calibrated. After this calibration of the instrument, no adjustment should be made .Introduce the solutions containing different concentrations of Sodium chloride (2, 4, 6, 8, 10µg) to the flame and find out the intensity of emitted light of each solution. Plot a calibration graph between concentration and intensity of NaCl solution which passes through the origin. Finally, introduce the sample of unknown solution containing sodium into the flame and find out the intensity of emitted radiation. From the intensity, the concentration of unknown solution can be determined 							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8	Observation Table, Look-up Table, Output	SL Concentrati NO. On of KCL Solution(pp m)							
9	Sample								
10	Calculation Graphs, Outputs								
11	Results & Analysis	The amount of potasium in the given sampleppm							
12	Application Areas	Analysis of chemical characteristics of water							
13	Remarks								
14	Faculty Signature with Date								

Exeriment 16: DETERMINATION OF NITRATES BY SPECTROSCOPIC METHOD

-	Experiment No.:	1	Marks		Date Plannec	l	Date Conducted		
1	Title	Jar tes	Jar test apparatus						
2	Course Outcomes	Studer	Students are able to determine nitrates content in a given sample						
3	Aim	To det	ermine the a	mount of nitr	ates prese	nt in the given s	ample solutio	on.	
4	Material / Equipment Required		 Flame photometer Volumetric flasks Pipette 						
5	Theory, Formula, Principle, Concept	Flame mostly the sau residue gives r electro back t measu and qu	⁻ lame emission spectroscopy is a type of atomic emission spectroscopy. It is nostly applicable for analysis of alkali and alkali earth metals. In this spectroscopy, he sample solution of sodium salt is nebulized in to flame, which may produce solid residue upon solvent evaporation. This solid residue undergoes atomization and gives neutral atoms which may acquire thermal energy from flame and undergoes electronic excitation. Due to unstable nature of excited state, excited atoms come back to ground state by emission of absorbed energy as visible radiation. By measuring the wavelength and intensity of emitted radiation, we can do qualitative and quantitative analysis respectively.						
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Prepa Dissol ^ı contair	Preparation of standard solutions for calibration curve: Dissolve exactly 1.88 gm of Sodium chloride in water and make up to 1 liter. This contains1mg per ml (1000 ppm).						
		Estima	Estimation of Sodium by flame photometer:						
	Director Circo it	 First, switch on the digital flame photometer followed by the air compressor with the required value (10 bar). Open the gas from the gas cylinder (after the instrument is warmed up for 10 minutes). Initially allow the ion-free water (distilled water) to aspirate in to the flame and set the digital value as 100. Now the instrument is said to be calibrated. After this calibration of the instrument, no adjustment should be made .Introduce the solutions containing different concentrations of Sodium chloride (2, 4, 6, 8, 10µg) to the flame and find out the intensity of emitted light of each solution. Plot a calibration graph between concentration and intensity of NaCl solution which passes through the origin. Finally, introduce the sample of unknown solution containing sodium into the flame and find out the intensity of emitted radiation. From the intensity, the concentration of 							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8	Observation Table, Look-up Table, Output	SL NO.	Concentr on of A Solution m)	rati Flame Agcl (pp	intensity				

9	Sample Calculation	
10	Graphs, Outputs	
11	Results & Analysis	Nitrate nitrogen (mg/l) =
12	Application Areas	Analysis of chemical characteristics of water
13	Remarks	
14	Faculty Signature with Date	

Exeriment 17:DETERMINATION OF IRON BY PHENANTHROLINE METHOD

-	Experiment	1	Marks		Date		Date				
	No.:				Planned		Conducted				
1	Title	Jar te	est apparatus								
2	Course Outcomes	Stude	ents are able	to determine	iron content	in a given sa	mple				
3	Aim	To de	o determine the amount of iron present in the given sample solution.								
4	Material / Equipment Required		Flame photometerVolumetric flasksPipette								
5	Theory, Formula, Principle, Concept	Flame mostl the sa residu gives electr back meas and c	⁻ Flame emission spectroscopy is a type of atomic emission spectroscopy. It is mostly applicable for analysis of alkali and alkali earth metals. In this spectroscopy, the sample solution of sodium salt is nebulized in to flame, which may produce solid residue upon solvent evaporation. This solid residue undergoes atomization and gives neutral atoms which may acquire thermal energy from flame and undergoes electronic excitation. Due to unstable nature of excited state, excited atoms come back to ground state by emission of absorbed energy as visible radiation. By measuring the wavelength and intensity of emitted radiation, we can do qualitative and quantitative analysis respectively.								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Prep Disso conta	aration of so live exactly 1 ins1mg per n	tandard solu .88 gm of So nl (1000 ppm)	i tions for ca dium chlorid	libration cu e in water an	rve: d make up to	o 1 liter. This			
		 Estimation of Sodium by flame photometer: First, switch on the digital flame photometer followed by the air compressor with the required value (10 bar). Open the gas from the gas cylinder (after the instrument is warmed up for 10 minutes). Initially allow the ion-free water (distilled water) to aspirate in to the flame and set the digital value as 100. Now the instrument is said to 									

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Observation Table, Look-up Table, Output	• SL NO.	be calibrated. A be made .Intro Sodium chlorid emitted light of Plot a calibrat solution which unknown solut intensity of en unknown solution Concentrati on of HCL Solution(pp m)	After this calibration oduce the solution e (2, 4, 6, 8, 10µg each solution. ion graph betwee passes through th ion containing so nitted radiation. F on can be determined Flame intensity	n of the instrument, no adjustment should ns containing different concentrations of) to the flame and find out the intensity of en concentration and intensity of NaCI ne origin. Finally, introduce the sample of odium into the flame and find out the from the intensity, the concentration of ned
9	Sample Calculation				
10	Graphs, Outputs				
11	Results & Analysis	Iron co	ontent of the same	mple (mg/l) =	
12	Application Areas	Analysi	s of chemical cl	haracteristics of w	ater
13	Remarks				
14	Faculty				
	Signature with Date				

F. Content to Experiment Outcomes

1. TLPA Parameters

		L'EAUIT		2			
Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instruction	Assessmen
#	(Split module content into 2 parts which	Teachin	Learning	Bloo	Action	Methods	t Methods
	have similar concepts)	g Hours	Levels	ms'	Verbs for	for	to Measure
			for	Level	Learning	Learning	Learning
			Content				J
Α	В	С	D	Ε	F	G	Н
1	Determination of pH, Acidity and Alkalinity	3	-	L3	-Analyse	- Lecture	CIA
			- L3		-	-	
			-			Demonstrati	
						on	
						-	
2	Determination of Calcium, Magnesium and Total	3	-	L3	-Analyse	- Lecture	CIA
	Hardness.		- L3			- Domonstrati	
			-			Demonstrati	
						-	
3	Determination of Dissolved Oxygen.	3	_	L3	-	- Lecture	CIA
Ū	Determination of BOD	Ũ	- L3		-Analyse	_	
			-		-	Demonstrati	
						on	
4	Determination of Chlorides	3	-	L3	-	- Lecture	CIA
			- L3		-Analyse	-	
			-			Demonstrati	
	Determination of percentage of available	2		10			CIA
5	chlorine in bleaching powder	3	- 3	L3	- -Analyse		CIA
			-		7 (1)(1)(5)	Demonstrati	
						on	
6	Determination of Residual Chlorine	3	-	L3	-	- Lecture	CIA
			- L3		-Analyse	-	
			-			Demonstrati	
						on	
7	Determination of Solids in Sewage: I) Total Solids,	3	-	L3	-	- Lecture	CIA
	II) Suspended Solids, III) Dissolved Solids Velatila Solida, Eived Solida		- L3		-Analyse	- Domonstrati	
	III) Dissolved Solids, volalite Solids, Fixed Solids, V) Settle able Solids		-			on	
	v) Settle able Solids.					-	
8	Determination of Turbidity by Nephelometer	3	_	L3	-Analvse	- Lecture	CIA
		Ũ	- L3		-	_	
			_			Demonstrati	
						on	
_				1 -		-	
9	Determination of Optimum Dosage of Alum	3	-	∟3	- Analyse	- Lecture	CIA
	using sar lest apparatus.		- L3 -		-Analyse	- Demonstrati	
						on	
						-	

Table 1: TLPA – Example Course

10	Determination of sodium and potassium using flame photometer.	3	L3	L3	Analyse	Lecture Demonstrati on	CIA
11	Determination Nitrates by spectrophotometer.	3	L3	L3	Analyse	Lecture Demonstrati on	CIA
12	Determination of Iron & Manganese	3	L3	L3	Analyse	Lecture Demonstrati on	CIA
13	Determination of COD	3	L2	L2		Lecture Demonstrati on	CIA
14	Air Quality Monitoring (Ambient, stack monitoring , Indoor air	3	L2	L2		Lecture Demonstrati on	CIA
15	Determination of Sound by Sound level meter at different location	3	L2	L2		Lecture Demonstrati on	CIA

2. Concepts and Outcomes:

<u>Table 2: Concept to Outcome – Example Course</u>

Expt	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to
Α	1	J	K	L	М	N
1	-understand the importance of water quality standards -	-Quality standards -	Quality standards	understand the importance of water quality standards	-Analyse	The students will be able to understand the importance of water quality standards
2	-analyse the chemical characteristi cs of a given water sample viz. pH, acidity, alkalinity	-pH, Acidity and Alkalinity -	pH, Acidity and Alkalinity	analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity -	-Analyse	The student will be able to analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity
3	-analyse the physical characteristi cs viz. colour, turbidity, and Hardness of a given water sample -	-Calcium, Magnesiu m and Total Hardness. -	Calcium, Magnesium and Total Hardness.	analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample	-Analyse	The student will be able to analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample
4	-analyse the Dissolved	- Dissolved	Dissolved Oxygen, BOD	-analyse the Dissolved oxygen	-Analyse	The student will be able to analyse the

	oxygen and biochemical oxygen demand in water and waste water -	Oxygen. BOD -		and biochemical oxygen demand in water and waste water -		Dissolved oxygen and biochemical oxygen demand in water and waste water
5	-determine the chlorides in the given sample -	- Chlorides -	Chlorides	determine the chlorides in the given	-Analyse	The student will be able to determine the chlorides in the given sample
6	-analyse the chemical characteristi cs of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	-available chlorine, Residual Chlorine -	available chlorine, Residual Chlorine	analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	-Analyse	To analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes
7	-determine the optimum dosage of alum using Jar test -	-Turbidity, -Optimum Dosage of Alum	Turbidity, Optimum Dosage of Alum	determine the optimum dosage of alum using Jar test	-Analyse	The student will be able to determine the optimum dosage of alum using Jar test
8	-analyse the chemical characteristi cs of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	-sodium and potassium ,Iron, mangane se -	sodium and potassium ,Iron, manganese	analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	-Analyse	To analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes
9	-understand the Chemical Oxygen Demand in waste water -	-COD -	COD	understand the Chemical Oxygen Demand in waste water -	-Analyse	The student will be able to understand the Chemical Oxygen Demand in waste water

10	understand	Air quality,	Air quality,	understand the Air	-Analyse	The student	will be
	the Air	sound	sound	quality Monitoring		able to unc	derstand
	quality			and sound level		the Air	quality
	Monitoring					Monitoring	and
	and sound					sound level	
	level						