SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

LABORATORY PLAN

Academic Year 2019-20

Program:	B E - Civil Engineering
Semester:	7
Course Code:	15 CVL76
Course Title:	Environmental Engineering Laboratory
Credit /L-T-P:	$2 / 0-0-2$
Total Contact Hours:	42
Course Plan Author:	Priyankashri KN

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line \& status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION 3

1. Laboratory Overview 3
2. Laboratory Content. 3
3. Laboratory Material 3
4. Laboratory Prerequisites: 4
5. Content for Placement, Profession, HE and GATE 4
B. Laboratory Instructions 5
6. General Instructions. 5
7. Laboratory Specific Instructions 5
C. OBE PARAMETERS 5
8. Laboratory Outcomes. 5
9. Laboratory Applications 6
10. Mapping And Justification 7
11. Articulation Matrix 8
12. Curricular Gap and Experiments 9
13. Experiments Beyond Syllabus. 9
D. COURSE ASSESSMENT 9
14. Laboratory Coverage 9
15. Continuous Internal Assessment (CIA) 10
E. EXPERIMENTS 10
Experiment 01 : Determination of pH , Acidity and Alkalinity 10
Experiment 02 : DETERMINATION OF TOTAL HARDNESS OF WATER SAMPLE 14
Experiment 03 : DISSOLVED OXYGEN TEST BY WINKLER'S METHOD OR MODIFIED AZIDE METHOD. 18
Experiment 04 : BIOCHEMICAL OXYGEN DEMAND 19
Experiment 05 :DETERMINATION OF CHLORIDE BY ARGENTOMETRIC METHOD OR MOHR'S SALT METHOD 21
Experiment 06 : AVAILABLE CHLORINE IN BLEACHING POWDER 22
Experiment 07 : RESIDUAL CHLORINE 23
Experiment 08 : DETERMINATION OF SOLIDS IN SEWAGE: 24
Experiment 09 : Total suspended solids. 25
Experiment 10 : TOTAL DISSOLVED SOLIDS 26
Experiment 11 : TOTAL FIXED AND VOLATILE SOLIDS 27
Experiment 11 : TOTAL SETTLEABLE SOLIDS 28
Experiment 12:TURBIDITY DETERMINATION BY NEPHELOMETER 29
Exeriment 13:OPTIMUM DOSAGE COAGULANTS 30
Exeriment 14:DETERMINATION OF SODIUM BY FLAME PHOTOMETER. 31
Exeriment 15:DETERMINATION OF POTASSIUM BY FLAME PHOTOMETRY 32
Exeriment 16:DETERMINATION OF NITRATES BY SPECTROSCOPIC METHOD 33
Exeriment 17:DETERMINATION OF IRON BY PHENANTHROLINE METHOD 35
F. Content to Experiment Outcomes 37
16. TLPA Parameters 37
17. Concepts and Outcomes: 38
Note : Remove "Table of Content" before including in CP Book
Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.Tech	Program:	CV
Year / Semester:	$3 / 7$	Academic Year:	2019-20
Course Title:	Environmental Engineering laboratory	Course Code:	15CVL76
Credit / L-T-P:	$2 / 0-0-3$	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	$5 / 1$ Experiment
Course Plan Author:	Priyankashri K N	Sign	Dt : 04-04-2019
Checked By:	Shiva Prasad D G	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Determination of pH , Acidity and Alkalinity	02	pH, Acidity and Alkalinity	L3 Apply
2	Determination of Calcium, Magnesium and Total Hardness.	02	Calcium, Magnesium and Total Hardness.	L3 Apply
3	Determination of Dissolved Oxygen. Determination of BOD	02	$\begin{array}{\|l\|} \hline \text { Dissolved } \\ \text { Oxygen.BOD } \\ \hline \end{array}$	L3 Apply
4	Determination of Chlorides	01	Chlorides	L3 Apply
5	Determination of percentage of available chlorine in bleaching powder,	02	available chlorine	L3 Apply
6	Determination of Residual Chlorine		Residual Chlorine	L3 Apply
7	Determination of Solids in Sewage: I) Total Solids, II) Suspended Solids, III) Dissolved Solids,Volatile Solids, Fixed Solids, V) Settle able Solids.	02	Total Solids,	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
8	Determination of Turbidity by Nephelometer	02	Turbidity	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
9	Determination of Optimum Dosage of Alum using Jar test apparatus.	02	Optimum Dosage of Alum	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
10	Determination of sodium and potassium using flame photometer.	01	sodium and potassium	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
11	Determination Nitrates by spectrophotometer.	01	Nitrates	L3 Apply
12	Determination of Iron \& Manganese	01	Iron \& Manganese	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
13	Determination of COD	Demonstr ation	COD	L2 Undestan d
14	Air Quality Monitoring (Ambient, stack monitoring, Indoor air	Demonstr ation	Air Quality	L2 Undestan d
15	Determination of Sound by Sound level meter at different location	Demonstr ation	Sound	L2 Undestan d

3. Laboratory Material

Books \& other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Text books		In Lib / In Dept
	S.K.Garg, "Water Supply Engineering", Khanna Publishers. 2010 T2 B.C Punmia, "Water Supply Engineering", Laxmi Publications Pvt. Ltd.,	In Lib	$\begin{aligned} & \text { In Lib/In } \\ & \text { dept } \end{aligned}$
	"Standard methods for the examination of water and wastewater" 1995 , ALPHA, AWWWA, WPCF Publication		-
2	Reference books		In Lib
	"Chemistry for Environmental Engineering"- Sawer and McCarty, McGraw Hill.	In dept	Not Available
	R3 "Manual of standards of quality for Drinking Water Supplies"- Indian Council of Medical Research, New Delhi.		
	"International Standards of Drinking Water" - W.H.O.		-
	"IS 2490-1981, IS 3306-1974, IS 3307-1977, IS 7968-1976, IS 2296-1974, IS 10500-1991" Bureau of Indian Standards, New Delhi, Effluent Standard KSPCB		
3	Others (Web, Video, Simulation, Notes etc.)		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5 .
Students must have learnt the following Courses / Topics with described Content

Expt.	Lab. Code	Lab. Name	Topic / Description	Sem	Remarks	Blooms Level
1	15 CHE17	ENGINEERING CHEMISTRY	Basic concepts of chemical reactions and mass balance	01		L3
2						
3						
5						
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

| Expt. | Topic / Description | Area | Remarks |
| :---: | :---: | :---: | :---: | Blooms

LABORATORY PLAN - CAY 2019-20

| | | | | Level |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 1 | Knowledge of BOD, COD,
 Spectrophotometry | Higher
 Study | - | Understa
 nd L2 |
| | | | | |
| 5 | | | | |
| - | | | | |

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks		
1	Students must wear Shoes and Aprons in the Lab			
2	Students must know Do's \& Don't's of the Laboratory			
3	Handle chemicals and Glasswares with care			
4	Clean working tables neatly after using			
5	Before conducting any test, students shall come prepared with theoretical background of the corresponding test (indicated under the section'theory' in each test).			
6	Students shall make sure to have the knowledge of using weighing balance oven. 7	Students shall give importance to accuracy and precision while conducting the test and interpreting the results		
8	Students shall acquaint themselves with the safe and correct usage of instruments / equipment's glassware chemicals acids under the guidance of teaching / supporting staff of the laboratory			

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt. Lab Code \#	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment
Blooms'					

			Hours		Method	Method	Level
-	-	At the end of the experiment, the student should be able to ...	-	-	-	-	-
1	15CVL76.1	The students will be able to understand the importance of water quality standards	02	Quality standards	Lecture and demons tration	C.IA	L3 Apply
2	15CVL76.2	The student will be able to analyse the chemical characteristics of a given water sample viz. pH , acidity, alkalinity	02	pH, Acidity and Alkalinity	Lecture and demons tration	C.IA	L3 Apply
3	15CVL76.3	The student will be able to analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample	02	Calcium, Magnesium and Total Hardness.	Lecture and demons tration	C.IA	L3 Apply
4	15CVL76.4	The student will be able to analyse the Dissolved oxygen and biochemical oxygen demand in water and waste water	02	$\begin{aligned} & \text { Dissolved } \\ & \text { Oxygen.BOD } \end{aligned}$	Lecture and demons tration	C.IA	L3 Apply
5	15CVL76.5	The student will be able to determine the chlorides in the given sample	02	Chlorides	Lecture and demons tration	C.IA	L3 Apply
6	15CVL76.6	To analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	02	available chlorine, Residual Chlorine	Lecture and demons tration	C.IA	L3 Apply
7	15CVL76.7	The student will be able to determine the optimum dosage of alum using Jar test	02	Turbidity, Optimum Dosage of Alum	Lecture and demons tration	C.IA	L3 Apply
8	15CVL76.8	To analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	02	sodium and potassium ,Iron,mangan ese	Lecture and demons tration	C.IA	L3 Apply
9	15CVL76.9	The student will be able to understand the Chemical Oxygen Demand in waste water	02	COD	Lecture and demons tration	C.IA	L3 Apply
10	15CVL76.10	The student will be able to understand the Air quality Monitoring and sound level	02	Air quality, sound	Lecture and demons tration	C.IA	L2 Undesta nd
		Total	36		-	-	-

Note: Identify a max of 2 Concepts per unit. W/rite 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Evaluate physical and chemical biological characteristics of water and waste water	CO 1	L 3
2	Measure quality of water	CO 2	L 3
3	To provide safe and portable water to public	CO 3	L 3
4	Determination of physical characteristics of water	CO 4	L 3
5	Determination of chemical characteristics of water	CO 5	L 3
6	Determination of Biological characteristics of water	CO 6	L 3
7	To check concentration of chlorine sodium potassium iron and manganese levels	CO 7	L 3

	in water		
8	Ability to find concentration of chemical oxygen demand in waste water	CO 8	L 3
9	Air quality monitoring	CO 9	L 2
10	Measure noise pollution	CO 10	L 2

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Expt	Mapping		Mapping	Justification for each CO-PO pair	
-	CO	PO	-	'Area': ‘Competency' and 'Knowledge' for specified 'Accomplishment'	-
	CO1	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals inferring the quality of water	L2
	CO1	PO 2	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for dissolved oxygen content in water	L3
	CO 2	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out chemical parameters like pH , acidity, alkalinity	L6
	CO 2	PO 2	L3	The students will be able to identify, formulate, review research literature, and analyse pH , acidity, alkalinity using Indian standard methods in reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L2
	CO 2	PO 3	L3	The students will be able to design solutions for making the pH , acidity, alkalinity within the standard levels	L3
	CO 3	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out the physical characteristics viz. colour, turbidity, and conductivity of a given water sample	L6
	CO 3	PO 2	L3	The students will be able to identify and examine physical characteristics viz. colour, turbidity, and conductivity of a given water sample using natural sciences, and engineering sciences	L2
	CO 4	PO 2	L3	The students will be able to identify, formulate and review research literature for dissolved oxygen content in water reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L2
	CO 4	PO 4	L3	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of dissolved oxygen content	L3
	CO 5	PO 2	L3	The students will be able to identify, formulate and review research literature for chloride content in water reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	L6
	CO 5	PO 4	L3	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of chlorides content	L2
	C06	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to examine the chemical characteristics viz. chlorides, Iron, Available Chlorine and sulphates content to assess its suitability for drinking purposes.	L2
	C06	PO 2	L3	The students will be able to identify, formulate, review research literature, and analyse chemical characteristics viz. chlorides, Iron, Available Chlorine and sulphates content in samples	L3
	$\mathrm{CO7}$	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to find the optimum dosage of alum using Jar test	L6
	CO 7	PO 2	L3	The students will be able to identify, formulate, review research literature, and analyse the optimum dosage of alum using Jar test reaching	L2

			substantiated conclusions natural sciences, and engineering sciences	
C08	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to examine the chemical characteristics viz. chlorides, sodium potassium, Iron, nitrates, manganese content to assess its suitability for drinking purposes.	L2
C08	PO 2	L3	The students will be able to identify, formulate, review research literature, and analyse chemical characteristics viz. sodium, potassium, Iron, nitrates, manganese content in samples	L3
COg	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to understand the COD to assess its suitability for drinking purposes.	L6
CO10	PO1	L3	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to understand the Air quality Monitoring and sound levels	L2

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes															-
Expt.	CO.\#	At the end of the experiment student should be able to .					PO	PO		PO	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	1 PO	PO	PO	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O} 1 \end{aligned}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O}_{2} \end{aligned}$	PS	$\begin{gathered} \text { Lev } \\ \mathrm{el} \end{gathered}$
1	15CVL76.1	The students will be able to understand the importance of water quality standards	2	3	-	-	-	-	-	-	-	-	-	-				L2
1	15CVL76.2	The student will be able to analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity	3	2	1	-	-	-	-	-	-	-	-	-				L2
2	15CVL76.3	The student will be able to analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample	3	2	3	-	-	-	-	-	-	-	-	-				L2
2	15CVL76.4	The student will be able to analyse the Dissolved oxygen and biochemical oxygen demand in water and waste water	3	3	3	-	-	-	-	-	-	-	-	-				L3
3	15CVL76.5	The student will be able to determine the chlorides in the given sample	3	2		-	-	-	-	-	-	-	-	-				L2
3	15CVL76.6	To analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	3	2		-	-	-	-	-	-	-	-	-				L3
4	15CVL76.7	The student will be able to determine the optimum dosage of alum using Jar test	3	2		-	-	-	-	-	-	-	-	-				L3
4	15CVL76.8	To analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	3	2		-	-	-	-	-	-	-	-	-				L3
5	15CVL76.9	The student will be able to understand the Chemical Oxygen Demand in waste water		2		-	-	-	-	-	-	-	-	-				L2

5. Curricular Gap and Experiments

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.

6. Experiments Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi			. of qu	uestion	in Exa	am		CO	Levels
		ng Hours	CIA-1	CIA-2	CIA-3	Asg-1\|	Asg-2	Asg-3	SEE		
1	Determination of pH , Acidity and Alkalinity	06	1	-	-	-	-	-	1	CO1	L3
2	Determination of Calcium, Magnesium and Total Hardness.	03	1	-	-	-	-	-	1	CO 2	L3

LABORATORY PLAN - CAY 2019-20

3	Determination of Dissolved Oxygen BOD	03	1	-	-	-	-	-	1	CO 3	L 3
4	Determination of Chlorides	03	-	1	-	-	-	-	1	CO 4	L 3
5	Determination of percentage of available chlorine and residual chlorine	O 3	-	1	-	-	-	-	1	CO 5	L 3
6	Determination of Solids in Sewage:	03	-	1	-	-	-	-	1	CO 6	L 3
7	Determination of sodium and potassium using flame photometer.	09	-	-	1	-	-	-	1	CO 7	L 3
8	Determination Nitrates, sodium by spectrophotometer.	03	-	-	1	-	-	-	1	CO 8	L 3
9	Determination of COD.	03	-	-	1	-	-	-	1	CO 9	L 3
10	Air Quality Monitoring	06	-	-	-	-	-	-	1	CO 10	L 2
-	Total	$\mathbf{4 2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	-	-	-	$\mathbf{1 0}$	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	15	CO1, CO2, CO3	L3,L3,L3
CIA Exam - 2	15	$\mathrm{CO}_{4}, \mathrm{CO} 5, \mathrm{CO} 6$	L3,L3,L3
CIA Exam-3	15	CO7, $\mathrm{CO}, \mathrm{CO} 9$	L3,L3,L3
Assignment - 1	05	$\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3$	L3,L3,L3
Assignment-2	05	$\mathrm{CO}_{4}, \mathrm{CO}_{5}, \mathrm{CO} 6$	L3,L3,L3
Assignment - 3	05	CO7,C08, CO9	L3,L3,L3
Seminar - 1	-		
Seminar-2	-		
Seminar-3	-		
	-		
Other Activities - define Slip test		CO1 to Cog	L2, L3, L4 . ..
Final CIA Marks	20	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	20 Marks
4	Internal Assessment	40 Marks
5	SEE	80 Marks
-	Total	$\mathbf{1 0 0}$ Marks

E. EXPERIMENTS

Experiment 01 : Determination of pH , Acidity and Alkalinity

| - | Experiment No.: | 1 | Marks | Date
 Planned | Date
 Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Title | To measure the pH of the water using pH meter | | | |
| 2 | Course Outcomes | student will be able to analyse the chemical characteristics of a given water
 sample viz. pH, acidity, alkalinity | | | |

9	Sample Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	-pH of the given sample of water = Sample No. $1=$
Sample No.2 =		
12	Application Areas	Evaluate chemical characteristics of water
13	Remarks Signature	
14	Faculty with Date	

9	Sample Calculations	Mineral acidity due to mineral acids (as CaCO3) $(\mathrm{mg} / \mathrm{l})=\left(\mathrm{V}_{1} \times 1000\right) / \mathrm{ml}$ of sample taken CO_{2} acidity due to CO_{2} (as CaCO3) $(\mathrm{mg} / \mathrm{l})=\left(\mathrm{V}_{2} \times 1000 / \mathrm{ml}\right.$ of sampltaken
10	Graphs, Outputs	
11	Results \& Analysis	Mineral acidity $(\mathrm{mg} / \mathrm{l})=\mathrm{CO}_{2}$ acidity $(\mathrm{mg} / \mathrm{l})=$ Total acidity as $\left(\mathrm{CaCO}_{3}\right)=$ Mineral acidity $+\mathrm{CO}_{2}$ acidity.
12	Application Areas	Evaluate chemical characteristics of water sample
13	Remarks	
14	FacultyFignature with Date	

[^0]Copyright ©2017. cAAS. All rights reserved.

Experiment 02 : DETERMINATION OF TOTAL HARDNESS OF WATER SAMPLE

- Experiment No.: Marks Date Planned Date Conducted 1 Title Total Hardness 2 Course Outcomes student will be able to analyse the chemical characteristics of a given water sample viz. Total hardness, calcium and magnesium hardness 3 Aim To determine the Total Hardness of the given sample
4Material Equipment Required

		- Standard EDTA solution as titrate (0.1M)
5	Theory, Formula, Principle, Concept	Hardness in water is that characteristics which prevents the formation of sufficient lather or foam, when such hardness are mixed with soap. Hardness is a measure of the ability of water to cause precipitation of insoluble calcium and magnesium salts of higher fatly acids from soap solutions. Hardness is defined as the characteristics of water which represents the total concentration of calcium and magnesium ions expressed as CaCO_{3} and hence hardness is always reported as molar equivalent of CaCO_{3} in $\mathrm{mg} / \mathrm{lt}$. Hardness of water is not a specific element but variable accounted by a complex mixture of cat ions and anions
6	Procedure,	PROCEDURE: 1) TOTAL HARDNESS - Total 100 ml of sample in a clean conical flask. - Add 1 ml of ammonia buffer solution. - Add 1 pinch of Erichrome black-T indicator colour of the solution turns to wine red.Titrate against std EDTA solution till the colour changes to wine red to clear blue note down the burette reading $(A-B)$. Total hardness in $\mathrm{mg} / \mathrm{lit}$ as caco3 $=((A-B) \times 1000) /(\mathrm{ml}$ of sample taken $)$. 2) PERMANENT HARDNESS - Boil the sample continuously until all the CO_{2} gets expelled from the surface. - Cool the sample. - Take 100 ml of sample in a clean conical flask. - Add 1 ml of ammonia buffer solution. - Add 1 pinch of Erichrome black-T indicator colour of the solution turns wine red. - Titrate against std EDTA solution till the colour changes to wine red to clear blue note down the burette reading (A-B). - Permanent hardness in $\mathrm{mg} / \mathrm{lit}$ as $\mathrm{CaCO}_{3}=((\mathrm{A}-\mathrm{B}) \times 1000) /(\mathrm{ml}$ of sample taken).
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
	Observation Table,	1) TOTAL HARDNESS:

LABORATORY PLAN - CAY 2019-20

		$\begin{aligned} & \text { Temporary hardness = total hardness - permanent hardness } \\ & =\quad \mathrm{mg} / \mathrm{l} \text { as } \mathrm{CaCO}_{3} \end{aligned}$
10	Graphs, Outputs	
11	Results \& Analysis	- Total hardness of given sample = \qquad mg / l as CaCO_{3} - Permanent hardness of given sample= \qquad mg / l as CaCO_{3} - Temporary hardness of given sample= \qquad mg/l CaCO_{3}
12	Application Areas	Analysis of water auality
13	Remarks	
14	Faculty Signature with Date	

Experiment 03: DISSOLVED OXYGEN TEST BY WINKLER'S METHOD OR MODIFIED AZIDE METHOD

-	Experiment No.:	3	Marks	Date Planned	Date Conducted
1	Title	DISSOLVED OXYGEN			
2	Course Outcomes	Students are able to determine Dissolved oxygen in a given sample			
3	Aim	To find the quantity of dissolved oxygen present in the given sample			
4	Material Equipment Required	- Manganese sulphate - Alkali iodide Azide reagent - Starch indicator - Concentrated sulphuric acid - Standard sodium Thiosulphate (0.025N)			
5	Theory, Formula, Principle, Concept	Oxygen present in sample oxidizes the divalent manganese to its higher valiancy which precipitates as a brown hydrated oxide after addition of NaOH and K of upon acidification manganese reacts to divalent static acid liberates iodine from K equivalent to BOD content in the sample. The liberated iodine is titrated against $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.025 \mathrm{~N})$ using starch as indicator. If oxygen absents in sample the MnSO_{4} reacts with alkali to form white precipitate $\mathrm{Mn}(\mathrm{OH})_{2}$.			
6	Procedure	- Take a clean and dry BOD bottle and collect 300 ml of water sample in it. - Tap the neck sample of the BOD bottle to expel air bubble if any. - Add 2 ml of manganese sulphate and 2 ml of alkali iodide azide solution to the BOD bottle. The tap water of the pipette should be below the liquid level while adding the above said solution. - Re-stopper with care to exclude air bubble. - Mix the content properly by repeatedly inverting the bubble 10-15 times. - If oxygen is present then the manganese ion gets converted into a brown colour manganese oxide $\left(\mathrm{MnO}_{3}\right)$. After taking and allowing sufficient limit for all oxygen to react, the chemical ppt is allowed to settle thereby having a clear liquid at the top portion.			

Experiment 04 : BIOCHEMICAL OXYGEN DEMAND

-	Experiment No.:	3	Marks		Date Planned	Date Conducted	
1	Title	Biochemical Oxygen Demand					
2	Course Outcomes	Students are able to determine Dissolved oxygen in a given sample					
3	Aim	To determine the biochemical oxygen demand in the given sample of water.					
4	Material Equipment Required	- Lab Manual - BOD bottle 300 capacity. - Incubator, to be controlled at $2^{0} \mathrm{C} \pm 1^{0} \mathrm{C}$. - Burette, - Pipette and - Measuring jar					
5	Theory, Formula,	BOD is defined as the amount of oxygen requ					

Experiment 05 :DETERMINATION OF CHLORIDE BY ARGENTOMETRIC METHOD OR MOHR'S SALT METHOD

		details	sample taken (ml)			solution used	(mg/l)
				Initial reading	Final reading		
8	Observation Table, Look-up Output Table, 						
9	Sample Calculations	$\mathrm{Cl}(\mathrm{mg} / \mathrm{l})$ $(\mathrm{mg} / \mathrm{l})=$ $\mathrm{Cl}(\mathrm{mg} / \mathrm{l})$ Sample Sample Sample	mality of A lity of AgN mality of A	$\begin{aligned} & \mathrm{JO}_{3} \times 35.45 \\ & 3 \times 35.45 \times \\ & \mathrm{NO}_{3} \times 35.45 \end{aligned}$	$\begin{aligned} & 1000)) /(\mathrm{m} \\ & 100)) /(\mathrm{ml} \\ & 1000)) /(\mathrm{m} \end{aligned}$	f sample) sample) f sample)	
10	Graphs, Outputs						
11	Results \& Analysis	Chloride Sample Sample Sample	n water g/l. g/l. g/l.				
12	Application Areas						
13	Remarks						
14	Faculty Signature with Date						

Experiment 06 : AVAILABLE CHLORINE IN BLEACHING POWDER

| - | Experiment No.: | Marks
 Date | Date
 Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Title | Available chlorine in bleaching powder | |

Experiment 07 : RESIDUAL CHLORINE

-	Experiment No.:	1	Marks		Date Planned	Date Conducted
1	Title	Residual chlorine in bleaching powder				
2	Course Outcomes	Students are able to determine Residual chlorine in a given sample				
3	Aim	To determine the Available chlorine in the given sample of water				
4	Material Equipment Required	- Conical flask, Burette, - Pipette and Volumetric flask - Bleaching powder,				

LABORATORY PLAN - CAY 2019-20

-	Experiment No.:	1	Marks	Date Planned	Date Conducted
1	Title	Total soilds			
2	Course Outcomes	Students are able to determine total solids in a given sample			
3	Aim	To determine the total solids in the given sample of water			
4	Material Equipment Required	Evaporating dish, oven and desiccators.			
5	Theory, Formula, Principle, Concept	Total solids are determined as a residue left after evaporation and drying of the unfiltered sample.			
6	Procedure, Program, Activity, Algorithm, Pseudo Code	- Take 100 ml of well mixed sample and pour it into evaporating dishes which is already been heated in an oven at $103^{\circ} \mathrm{C}$ for removing the moisture and desiccated for balancing the temperature and weighed $\left(\mathrm{W}_{1}\right)$. - Heat the sample until it is dried (24hrs). - Take out the evaporating dish ported in a desiccators and take out the final reading $\left(\mathrm{W}_{2}\right)$.			
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph				
8	Observation Table, Look-up Table, Output	Weight of the empty dish, $\mathrm{W}_{1}=$ \square g. Weight of the sample with dish (oven dried), $W_{2}=$ \qquad Volume of the sample taken, $\mathrm{V}=$ \qquad g			
9	Sample Calculation	Initial weight of the evaporating dish $\left(\mathrm{W}_{1}\right)=$ \qquad Final weight of the evaporating dish $\left(\mathrm{W}_{2}\right)=$ \qquad g. Total solids $=\left(\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) \times 1000 \times 1000\right) /($ volume of sample $)$. $=$ \qquad mg / l.			
10	Graphs, Outputs				
11	Results \& Analysis	Total solids of a given sample $=$ \qquad mg / l.			
12	Application Areas	Analysis of chemical characteristics of water			
13	Remarks				
14	Faculty Signature with Date				

Experiment 09 : Total suspended solids

-	Experiment No.:	1	Marks	Date Planned	Date Conducted	
1	Title	Total suspended solids				
2	Course Outcomes	Students are able to determine total solids in a given sample				
3	Aim	To determine the total solids in the given sample of water				
4	Material Equipment Required	Evaporating dish, oven and desiccators.				
5	Theory, Formula Principle, Concept	A well mixed sample is filtered through a filter paper and the residue retained on the filter is dried to a constant weight $103^{\circ} \mathrm{C}$. The increase in weight of filter paper represents the total suspended solids .				
6	Procedure,	- Take a wattman filter paper.				
15CVL76 Page \# 25/40 Copyright ©2017. cAAS. All rights res						

	Program, Activity, Algorithm, Pseudo Code	- Place in an oven and heat it at $103{ }^{\circ} \mathrm{C}$ to remove the moisture. Take a filter paper from the oven placed in desiccators to balance the temperature and take the initial weight $\left(\mathrm{W}_{1}\right)$. - Pour known volume of well mixed sample to the filter paper. - Once after the completion of filtration take the filter paper place it in an the oven and heat it for $103^{\circ} \mathrm{C}$ for 1 hour. - Take out the filter paper from oven and place it in the desiccators to balance the temperature and note down the final reading $\left(\mathrm{W}_{2}\right)$.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	Empty weight of filter paper, $\mathrm{W}_{1}=$ \qquad g. Weight of filter paper + suspended solids, $\mathrm{W}_{2}=$ \qquad g. Volume of sample= \qquad ml . Total suspended solids $=\left(\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) * 1000 * 1000\right) /($ volume of sample $)$. \qquad mg / l.
9	Sample Calculation	
10	Graphs, Outputs	
11	Results \& Analysis	suspended solids of a given sample $=\ldots \mathrm{mg} / \mathrm{l}$.
12	Application Areas	Analysis of chemical characteristics of water
13	Remarks	
14	Faculty Signature with Date	

Experiment 10 : TOTAL DISSOLVED SOLIDS

| - | Experiment No.: | Marks | Date
 Planned | Date
 Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Title | Total Dissolved solids | | |
| 2 | Course Outcomes | Students are able to determine total dissolved solids in a given sample | | |
| 3 | Aim | To determine the total dissolved solids in the given sample of water | | |

Experiment 11 : TOTAL FIXED AND VOLATILE SOLIDS

-	Experiment No.:	1	Marks	Date Planned	Date Conducted
1	Title	Total fixed and Volatile solids			
2	Course Outcomes	Students are able to determine total solids in a given sample			
3	Aim	To determine the total fixed solids in the given sample of water			
4	Material Equipment Required	1. Evaporating dish. 2. Oven $103^{\circ} \mathrm{C}$ 3. Muffle furnace $600^{\circ} \mathrm{C}$ 4. Desiccators 6. Water Bath			
5	Theory, Formula, Principle, Concept	Total volatile solids and fixed solids are determined as residue remaining after evaporation, drying at $103^{\circ} \mathrm{C}$ and ignition at $600^{\circ} \mathrm{C}$.			
6	Procedure, Program, Activity, Algorithm, Pseudo Code	- A clean porcelain dish is ignited in a muffle furnace and after partial cooling in air, it is cooled in a desiccators and weighed $\left(\mathrm{W}_{1}\right)$. - A 100 ml of well mixed sample (graduated cylinder in rinsed to ensure transfer of all suspended matter) is placed in the dish and evaporated at $100^{\circ} \mathrm{C}$ on water bath, followed by drying in oven at $103^{\circ} \mathrm{C}$ for 1 hour. - Dry to a constant weight at $103^{\circ} \mathrm{C}$, cool in desiccator and weighed $\left(\mathrm{W}_{2}\right)$. - Ignite the residue on evaporation at $600^{\circ} \mathrm{C}$ in the muffle furnace to constant weight in 10 to 15 min . - Allow the dish to cool and moisten the ash with a few drops of distilled water. - Dry to constant weight at $104^{\circ} \mathrm{C}$, cool in a desiccators and weighed $\left(\mathrm{W}_{3}\right)$.			
7	Block, Circuit,				

	Model Diagram Reaction Equation Expected Graph						
8	Observation Table Look-up Table Output	Type of solids	Sample details	Volume of sample, ml	Weight of empty dish (mg)	Weight of empty dish+ Residue (mg)	Residue (mg/l)
9	Sample CalculationTotal solids $(\mathrm{mg} / \mathrm{l})=\left(\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) \times 1000 \times 1000\right) /$ (volume of sample $)$. $=$ \qquad mg/l. Total volatile solids $(\mathrm{mg} / \mathrm{l})=$ Total solids-Fixed solids. = \qquad mg/l. Total fixed solids $(\mathrm{mg} / \mathrm{I})=\left(\left(\mathrm{W}_{3}-\mathrm{W}_{2}\right) \times 1000 \times 1000\right) /$ (volume of sample $)$. $=$ \qquad mg / l.						
10	Graphs, Outputs						
11	Results \& Analysis	The amount of Total, fixed and volatile solids of the given sample is $=$ \qquad mg / l					
12	Application Areas	Analysis of chemical characteristics of water					
13	Remarks						
14	Faculty Signature with Date						

Experiment 11 : TOTAL SETTLEABLE SOLIDS

-	Experiment No.:	1	Marks	Date Planned	Date Conducted
1	Title	Total Settleable solids			
2	Course Outcomes	Students are able to determine total Settleable solids in a given sample			
3	Aim	To determine the total Settleable solids in the given sample of water			
4	Material Equipment Required	/Imhoff cone. Holding device .			
5	Theory, Formula, Principle, Concept	The particles in suspensions whose specific gravity greater than that of water will settle under quiescent conditions			
6	Procedure, Program, Activity, Algorithm, Pseudo Code	- Gently fill the Imhoff cone with the thoroughly well mixed sample usually one liter and allow it to settle. - After 45 minutes, gently rotate the cone between hands to ensure that all solids adhering to the sides are loosened. - Allow the solids to settle for 15 minutes more, to make up for a total period of 1 hour.			

Experiment 12:TURBIDITY DETERMINATION BY NEPHELOMETER

9	Sample Calculation		
10	Graphs, Outputs		
11	Results \& Analysis	The turbidity of the given sample is	
12	Application Areas	Analysis of chemical characteristics of water	
13	Remarks		
14	Faculty Signature with Date		

Exeriment 13:OPTIMUM DOSAGE COAGULANTS

Exeriment 14:DETERMINATION OF SODIUM BY FLAME PHOTOMETER

Exeriment 15:DETERMINATION OF POTASSIUM BY FLAME
PHOTOMETRY

-	Experiment No.:	1	Marks	Date Planned	Date Conducted
1	Title	Jar test apparatus			
2	Course Outcomes	Students are able to determine potassium content in a given sample			
3	Aim	To determine the amount of potassium present in the given sample solution.			
4	Material Equipment Required	- Flame photometer - Volumetric flasks - Pipette			
5	Theory, Formula, Principle, Concept	Flame emission spectroscopy is a type of atomic emission spectroscopy. It is mostly applicable for analysis of alkali and alkali earth metals. In this spectroscopy, the sample solution of sodium salt is nebulized in to flame, which may produce solid residue upon solvent evaporation. This solid residue undergoes atomization and gives neutral atoms which may acquire thermal energy from flame and undergoes electronic excitation. Due to unstable nature of excited state, excited atoms come back to ground state by emission of absorbed energy as visible radiation. By measuring the wavelength and intensity of emitted radiation, we can do qualitative and quantitative analysis respectively.			

Exeriment 16:DETERMINATION OF NITRATES BY SPECTROSCOPIC METHOD

9	Sample Calculation			
10	Graphs, Outputs			
11	Results Analysis	$\&$ Nitrate nitrogen $(\mathrm{mg} / \mathrm{l})=$		
12	Application Areas	Analysis of chemical characteristics of water		
13	Remarks 14	Faculty Signature with Date		

Exeriment 17:DETERMINATION OF IRON BY PHENANTHROLINE METHOD

-	Experiment No.:	1	Marks	Date Planned	Date Conducted
1	Title	Jar test apparatus			
2	Course Outcomes	Students are able to determine iron content in a given sample			
3	Aim	To determine the amount of iron present in the given sample solution.			
4	Material Equipment Required	- Flame photometer - Volumetric flasks - Pipette			
5	Theory, Formula, Principle, Concept	Flame emission spectroscopy is a type of atomic emission spectroscopy. It is mostly applicable for analysis of alkali and alkali earth metals. In this spectroscopy, the sample solution of sodium salt is nebulized in to flame, which may produce solid residue upon solvent evaporation. This solid residue undergoes atomization and gives neutral atoms which may acquire thermal energy from flame and undergoes electronic excitation. Due to unstable nature of excited state, excited atoms come back to ground state by emission of absorbed energy as visible radiation. By measuring the wavelength and intensity of emitted radiation, we can do qualitative and quantitative analysis respectively.			
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Pre Diss con Esti	ration of ve exactly s1mg pe ation of First, sw with the Open th 10 minu to the fla	ions for ium chlori e photom l flame ph 0 bar). gas cylind w the iondigital value	rve: d make up wed by the a strument is tilled water) w the instrum

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

$\begin{gathered} \text { Expt- } \\ \# \end{gathered}$	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Content Teachin g Hours	Blooms' Learning Levels for Content	$\left\|\begin{array}{c\|} \text { Final } \\ \text { Bloo } \\ \text { ms } \\ \text { Level } \end{array}\right\|$	Identified Action Verbs for Learning	$\begin{aligned} & \text { Instruction } \\ & \text { Methods } \\ & \text { for } \\ & \text { Learning } \end{aligned}$	Assessmen t Methods to Measure Learning
A	B	C	D	E	F	G	H
1	Determination of pH , Acidity and Alkalinity	3	$-L 3$	L3	-Analyse	- Lecture Demonstrati on	CIA
2	Determination of Calcium, Magnesium and Total Hardness.	3	$-\quad \text { L3 }$	L3	-Analyse	- Lecture Demonstrati on	CIA
3	Determination of Dissolved Oxygen. Determination of BOD	3	- L3	L3	-Analyse	- Lecture Demonstrati on	CIA
4	Determination of Chlorides	3	$-\quad-\quad 13$	L3	-Analyse	- Lecture Demonstrati on	CIA
5	Determination of percentage of available chlorine in bleaching powder,	3	$-\quad \text { L3 }$	L3	-Analyse	- Lecture Demonstrati on	CIA
6	Determination of Residual Chlorine	3	$-\quad-\quad \text { L3 }$	L3	-Analyse	- Lecture Demonstrati on	CIA
7	Determination of Solids in Sewage: I) Total Solids, II) Suspended Solids, III) Dissolved Solids,Volatile Solids, Fixed Solids, V) Settle able Solids.	3	- L3	L3	-Analyse	- Lecture Demonstrati on	CIA
8	Determination of Turbidity by Nephelometer	3	$-\quad \mathrm{L} 3$	L3	-Analyse	- Lecture Demonstrati on	CIA
9	Determination of Optimum Dosage of Alum using Jar test apparatus.	3	$-\quad \text { L3 }$	L3	-Analyse	- Lecture Demonstrati on -	CIA

LABORATORY PLAN - CAY 2019-20

10	Determination of sodium and potassium using flame photometer.	3	L 3	L 3	Analyse	Lecture Demonstrati on	CIA
11	Determination Nitrates by spectrophotometer.	3	L 3	L 3	Analyse	Lecture Demonstrati on	CIA
12	Determination of Iron \& Manganese	3	L 3	$\mathrm{L3}$	Analyse	Lecture Demonstrati on	CIA
13	Determination of COD	3	L 2	$\mathrm{L2}$		Lecture Demonstrati on	CIA
14	Air Quality Monitoring (Ambient, stack monitoring Indoor air	3	L 2	L 2		Lecture Demonstrati on	CIA
15	Determination of Sound by Sound level meter at different location	3	L 2	L 2		Lecture Demonstrati on	CIA

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

$\begin{gathered} \text { Expt } \\ -\# \end{gathered}$	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to ...
A	1	J	K	L	M	N
1	-understand the importance of water quality standards	-Quality standards	Quality standards	understand the importance of water quality standards	-Analyse	The students will be able to understand the importance of water quality standards
2	-analyse the chemical characteristi cs of a given water sample viz. pH, acidity, alkalinity	-pH, Acidity and Alkalinity	pH, Acidity and Alkalinity	analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity	-Analyse	The student will be able to analyse the chemical characteristics of a given water sample viz. pH , acidity. alkalinity
3	-analyse the physical characteristi cs viz. colour, turbidity, and Hardness of a given water sample	-Calcium, Magnesiu m and Total Hardness.	Calcium, Magnesium and Total Hardness.	analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample	-Analyse	The student will be able to analyse the physical characteristics viz. colour, turbidity, and Hardness of a given water sample
4	-analyse the Dissolved	Dissolved	Dissolved Oxygen. BOD	-analyse the Dissolved oxygen	-Analyse	The student will be able to analyse the

	oxygen and biochemical oxygen demand in water and waste water	Oxygen. BOD		and biochemical oxygen demand in water and waste water		Dissolved oxygen and biochemical oxygen demand in water and waste water
5	-determine the chlorides in the given sample	Chlorides	Chlorides	determine the chlorides in the given	-Analyse	The student will be able to determine the chlorides in the given sample
6	-analyse the chemical characteristi cs of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	-available chlorine, Residual Chlorine	available chlorine, Residual Chlorine	analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes	-Analyse	To analyse the chemical characteristics of a given water sample viz. chlorides, Available Chlorine, residual chlorine content and turbidity to assess its suitability for drinking purposes
7	-determine the optimum dosage of alum using Jar test	-Turbidity, -Optimum Dosage of Alum	Turbidity, Optimum Dosage of Alum	determine the optimum dosage of alum using Jar test	-Analyse	The student will be able to determine the optimum dosage of alum using Jar test
8	-analyse the chemical characteristi cs of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	-sodium and potassium Iron, mangane se	sodium and potassium ,Iron, manganese	analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes	-Analyse	To analyse the chemical characteristics of a given water sample viz. Sodium and pottasium, Iron, nitrates, manganese content to assess its suitability for drinking purposes
9	-understand the Chemical Oxygen Demand in waste water -	$\overline{d-C O D}$	COD	understand the Chemical Oxygen Demand in waste water	-Analyse	The student will be able to understand the Chemical Oxygen Demand in waste water

[^0]: 15CVL76

